Spaces:
Sleeping
Sleeping
File size: 11,730 Bytes
4dca37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import math
import random
import numpy as np
from tqdm import tqdm
import cv2
from PIL import Image
import torch
import torch.nn.functional as F
# import torchvision.transforms as transforms
from itertools import combinations
from collections import OrderedDict
class MultiModalSubModularExplanation(object):
def __init__(self,
model,
semantic_feature,
preproccessing_function,
k = 40,
lambda1 = 1.0,
lambda2 = 1.0,
lambda3 = 1.0,
lambda4 = 1.0,
device = "cuda"):
super(MultiModalSubModularExplanation, self).__init__()
# Parameters of the submodular
self.k = k
self.model = model
self.semantic_feature = semantic_feature
self.preproccessing_function = preproccessing_function
self.lambda1 = lambda1
self.lambda2 = lambda2
self.lambda3 = lambda3
self.lambda4 = lambda4
self.device = device
def partition_collection(self, image_set):
"""
Divide m image elements into n sets
"""
image_set_size = len(image_set)
sample_size_per_partition = image_set_size
image_set_clone = list(image_set)
random.shuffle(image_set_clone)
V_partition = [image_set_clone[i: i + sample_size_per_partition] for i in range(0, image_set_size, sample_size_per_partition)]
assert len(V_partition[0]) == sample_size_per_partition
self.s_size = sample_size_per_partition
# assert image_set_size > sample_size_per_partition * self.k # 其实就是 self.n > self.k ?
return V_partition
def merge_image(self, sub_index_set, partition_image_set):
"""
merge image
"""
sub_image_set_ = np.array(partition_image_set)[sub_index_set]
image = sub_image_set_.sum(0)
return image.astype(np.uint8)
# def compute_effectiveness_score(self, features):
# """
# Computes Eeffectiveness Score: The point should be distant from all the other elements in the subset.
# features: torch.Size(batch, d)
# """
# norm_feature = F.normalize(features, p=2, dim=1)
# # Consine Similarity
# cosine_similarity = torch.mm(norm_feature, norm_feature.t())
# cosine_similarity = torch.clamp(cosine_similarity, min=-1, max=1)
# # Normlize 0-1
# cosine_dist = torch.arccos(cosine_similarity) / math.pi
# if cosine_dist.shape[0] == 1:
# eye = 1 - torch.eye(norm_feature.shape[0], device=self.device)
# masked_dist = cosine_dist * eye
# e_score = torch.sum(torch.min(masked_dist, dim=1).values)
# else:
# eye = torch.eye(norm_feature.shape[0], device=self.device)
# adjusted_cosine_dist = cosine_dist + eye
# e_score = torch.sum(torch.min(adjusted_cosine_dist, dim=1).values)
# return e_score # tensor(0.0343, device='cuda:0')
# def proccess_compute_effectiveness_score_v1(self, components_image_feature, combination_list):
# """
# Compute each S's effectiveness score
# """
# e_scores = []
# for sub_index in combination_list:
# sub_feature_set = components_image_feature[sub_index]
# e_score = self.compute_effectiveness_score(sub_feature_set)
# e_scores.append(e_score)
# return torch.stack(e_scores)
def proccess_compute_confidence_score(self):
"""
Compute confidence score
"""
# visual_features = self.model(batch_input_images)
# predicted_scores = torch.softmax(visual_features @ self.semantic_feature.T, dim=-1)
entropy = - torch.sum(self.predicted_scores * torch.log(self.predicted_scores + 1e-7), dim=1)
max_entropy = torch.log(torch.tensor(self.predicted_scores.shape[1])).to(self.device)
confidence = 1 - (entropy / max_entropy)
return confidence
def proccess_compute_effectiveness_score(self, sub_index_sets):
"""
Compute each S's effectiveness score
"""
e_scores = []
for sub_index in sub_index_sets:
cosine_dist = self.effectiveness_dist[:, np.array(sub_index)] # [len(element) , len(main_set)]
cosine_dist = cosine_dist[np.array(sub_index), :]
eye = torch.eye(cosine_dist.shape[0], device=self.device)
adjusted_cosine_dist = cosine_dist + eye
e_score = torch.sum(torch.min(adjusted_cosine_dist, dim=1).values)
e_scores.append(e_score)
effectiveness_score = torch.stack(e_scores)
if len(sub_index_sets[0]) == 1:
effectiveness_score = effectiveness_score * 0
return effectiveness_score
def proccess_compute_consistency_score(self, batch_input_images):
"""
Compute each consistency score
"""
with torch.no_grad():
visual_features = self.model(batch_input_images)
self.predicted_scores = torch.softmax(visual_features @ self.semantic_feature.T, dim=-1)
consistency_scores = self.predicted_scores[:, self.target_label]
return consistency_scores
def evaluation_maximun_sample(self,
main_set,
candidate_set,
partition_image_set):
"""
Given a subset, return a best sample index
"""
sub_index_sets = []
for candidate_ in candidate_set:
sub_index_sets.append(
np.concatenate((main_set, np.array([candidate_]))).astype(int))
# merge images / 组合图像
sub_images = torch.stack([
self.preproccessing_function(
self.merge_image(sub_index_set, partition_image_set)
) for sub_index_set in sub_index_sets])
batch_input_images = sub_images.to(self.device)
with torch.no_grad():
# 2. Effectiveness Score
score_effectiveness = self.proccess_compute_effectiveness_score(sub_index_sets)
# 3. Consistency Score
score_consistency = self.proccess_compute_consistency_score(batch_input_images)
# 1. Confidence Score
score_confidence = self.proccess_compute_confidence_score()
# 4. Collaboration Score
sub_images_reverse = torch.stack([
self.preproccessing_function(
self.org_img - self.merge_image(sub_index_set, partition_image_set)
) for sub_index_set in sub_index_sets])
batch_input_images_reverse = sub_images_reverse.to(self.device)
score_collaboration = 1 - self.proccess_compute_consistency_score(batch_input_images_reverse)
# 1. Confidence Score
# score_confidence = self.proccess_compute_confidence_score()
# submodular score
smdl_score = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness + self.lambda3 * score_consistency + self.lambda4 * score_collaboration
# smdl_score = self.lambda2 * score_effectiveness + self.lambda3 * score_consistency + self.lambda4 * score_collaboration
arg_max_index = smdl_score.argmax().cpu().item()
# if self.lambda1 != 0:
self.saved_json_file["confidence_score"].append(score_confidence[arg_max_index].cpu().item())
self.saved_json_file["effectiveness_score"].append(score_effectiveness[arg_max_index].cpu().item())
self.saved_json_file["consistency_score"].append(score_consistency[arg_max_index].cpu().item())
self.saved_json_file["collaboration_score"].append(score_collaboration[arg_max_index].cpu().item())
self.saved_json_file["smdl_score"].append(smdl_score[arg_max_index].cpu().item())
return sub_index_sets[arg_max_index]
def save_file_init(self):
self.saved_json_file = {}
self.saved_json_file["sub-k"] = self.k
self.saved_json_file["confidence_score"] = []
self.saved_json_file["effectiveness_score"] = []
self.saved_json_file["consistency_score"] = []
self.saved_json_file["collaboration_score"] = []
self.saved_json_file["smdl_score"] = []
self.saved_json_file["lambda1"] = self.lambda1
self.saved_json_file["lambda2"] = self.lambda2
self.saved_json_file["lambda3"] = self.lambda3
self.saved_json_file["lambda4"] = self.lambda4
def calculate_distance_of_each_element(self, partition_image_set):
"""
Calculate the similarity of each element, obtain a similarity matrix
"""
with torch.no_grad():
partition_images = torch.stack([
self.preproccessing_function(
partition_image
) for partition_image in partition_image_set]).to(self.device)
partition_image_features = self.model(partition_images)
norm_feature = F.normalize(partition_image_features, p=2, dim=1)
# Consine Similarity
cosine_similarity = torch.mm(norm_feature, norm_feature.t())
cosine_similarity = torch.clamp(cosine_similarity, min=-1, max=1)
# Normlize 0-1
self.effectiveness_dist = torch.arccos(cosine_similarity) / math.pi
def get_merge_set(self, partition):
"""
"""
Subset = np.array([])
indexes = np.arange(len(partition))
# First calculate the similarity of each element to facilitate calculation of effectiveness score.
self.calculate_distance_of_each_element(partition)
self.smdl_score_best = 0
for j in tqdm(range(self.k)):
diff = np.setdiff1d(indexes, np.array(Subset)) # in indexes but not in Subset
sub_candidate_indexes = diff
Subset = self.evaluation_maximun_sample(Subset, sub_candidate_indexes, partition)
return Subset
def __call__(self, image_set, id = None):
"""
Compute Source Face Submodular Score
@image_set: [mask_image 1, ..., mask_image m] (cv2 format)
"""
# V_partition = self.partition_collection(image_set) # [ [image1, image2, ...], [image1, image2, ...], ... ]
self.save_file_init()
self.org_img = np.array(image_set).sum(0).astype(np.uint8)
source_image = self.preproccessing_function(self.org_img)
self.source_feature = self.model(source_image.unsqueeze(0).to(self.device))
self.target_label = id
Subset_merge = np.array(image_set)
Submodular_Subset = self.get_merge_set(Subset_merge) # array([17, 42, 49, ...])
submodular_image_set = Subset_merge[Submodular_Subset] # sub_k x (112, 112, 3)
submodular_image = submodular_image_set.sum(0).astype(np.uint8)
self.saved_json_file["smdl_score_max"] = max(self.saved_json_file["smdl_score"])
self.saved_json_file["smdl_score_max_index"] = self.saved_json_file["smdl_score"].index(self.saved_json_file["smdl_score_max"])
return submodular_image, submodular_image_set, self.saved_json_file |