File size: 11,730 Bytes
4dca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import math
import random
import numpy as np

from tqdm import tqdm
import cv2
from PIL import Image

import torch
import torch.nn.functional as F
# import torchvision.transforms as transforms

from itertools import combinations
from collections import OrderedDict

class MultiModalSubModularExplanation(object):
    def __init__(self, 
                 model,
                 semantic_feature,
                 preproccessing_function,
                 k = 40,
                 lambda1 = 1.0,
                 lambda2 = 1.0,
                 lambda3 = 1.0,
                 lambda4 = 1.0,
                 device = "cuda"):
        super(MultiModalSubModularExplanation, self).__init__()
        
        # Parameters of the submodular
        self.k = k
        
        self.model = model
        self.semantic_feature = semantic_feature
        self.preproccessing_function = preproccessing_function
        
        self.lambda1 = lambda1
        self.lambda2 = lambda2
        self.lambda3 = lambda3
        self.lambda4 = lambda4
        
        self.device = device
        
    def partition_collection(self, image_set):
        """
        Divide m image elements into n sets
        """
        image_set_size = len(image_set)
        sample_size_per_partition = image_set_size
        
        image_set_clone = list(image_set)
        random.shuffle(image_set_clone)
        
        V_partition = [image_set_clone[i: i + sample_size_per_partition] for i in range(0, image_set_size, sample_size_per_partition)]
        
        assert len(V_partition[0]) == sample_size_per_partition
        
        self.s_size = sample_size_per_partition
        # assert image_set_size > sample_size_per_partition * self.k  # 其实就是 self.n > self.k ?
        return V_partition
    
    def merge_image(self, sub_index_set, partition_image_set):
        """
        merge image
        """
        sub_image_set_ = np.array(partition_image_set)[sub_index_set]
        image = sub_image_set_.sum(0)

        return image.astype(np.uint8)
    
    # def compute_effectiveness_score(self, features):
    #     """
    #     Computes Eeffectiveness Score: The point should be distant from all the other elements in the subset.
    #     features: torch.Size(batch, d)
    #     """
    #     norm_feature = F.normalize(features, p=2, dim=1)
    #     # Consine Similarity
    #     cosine_similarity = torch.mm(norm_feature, norm_feature.t())
    #     cosine_similarity = torch.clamp(cosine_similarity, min=-1, max=1)
    #     # Normlize 0-1
    #     cosine_dist = torch.arccos(cosine_similarity) / math.pi
        
    #     if cosine_dist.shape[0] == 1:
    #         eye = 1 - torch.eye(norm_feature.shape[0], device=self.device)
    #         masked_dist = cosine_dist * eye
    #         e_score = torch.sum(torch.min(masked_dist, dim=1).values)
    #     else:
    #         eye = torch.eye(norm_feature.shape[0], device=self.device)
    #         adjusted_cosine_dist = cosine_dist + eye
    #         e_score = torch.sum(torch.min(adjusted_cosine_dist, dim=1).values)
        
    #     return e_score # tensor(0.0343, device='cuda:0')
        
    # def proccess_compute_effectiveness_score_v1(self, components_image_feature, combination_list):
    #     """
    #     Compute each S's effectiveness score
    #     """
    #     e_scores = []
    #     for sub_index in combination_list:
    #         sub_feature_set = components_image_feature[sub_index]
    #         e_score = self.compute_effectiveness_score(sub_feature_set)
    #         e_scores.append(e_score)
        
    #     return torch.stack(e_scores)
    
    def proccess_compute_confidence_score(self):
        """
        Compute confidence score
        """
        # visual_features = self.model(batch_input_images)
        # predicted_scores = torch.softmax(visual_features @ self.semantic_feature.T, dim=-1)
        entropy = - torch.sum(self.predicted_scores * torch.log(self.predicted_scores + 1e-7), dim=1)
        max_entropy = torch.log(torch.tensor(self.predicted_scores.shape[1])).to(self.device)
        confidence = 1 - (entropy / max_entropy)
        return confidence 
    
    def proccess_compute_effectiveness_score(self, sub_index_sets):
        """
        Compute each S's effectiveness score
        """
        e_scores = []
        
        for sub_index in sub_index_sets:
            cosine_dist = self.effectiveness_dist[:, np.array(sub_index)]    # [len(element) , len(main_set)]
            cosine_dist = cosine_dist[np.array(sub_index), :]
            
            eye = torch.eye(cosine_dist.shape[0], device=self.device)
            adjusted_cosine_dist = cosine_dist + eye
            e_score = torch.sum(torch.min(adjusted_cosine_dist, dim=1).values)
            e_scores.append(e_score)
        
        effectiveness_score = torch.stack(e_scores)
        if len(sub_index_sets[0]) == 1:
            effectiveness_score = effectiveness_score * 0
        return effectiveness_score
    
    def proccess_compute_consistency_score(self, batch_input_images):
        """
        Compute each consistency score
        """
        with torch.no_grad():
            visual_features = self.model(batch_input_images)
            self.predicted_scores = torch.softmax(visual_features @ self.semantic_feature.T, dim=-1)
            consistency_scores = self.predicted_scores[:, self.target_label]

        return consistency_scores
    
    def evaluation_maximun_sample(self, 
                                  main_set, 
                                  candidate_set, 
                                  partition_image_set):
        """
        Given a subset, return a best sample index
        """
        sub_index_sets = []
        for candidate_ in candidate_set:
            sub_index_sets.append(
                np.concatenate((main_set, np.array([candidate_]))).astype(int))
       
        # merge images / 组合图像
        sub_images = torch.stack([
            self.preproccessing_function(
                self.merge_image(sub_index_set, partition_image_set)
            ) for sub_index_set in sub_index_sets])
        
        batch_input_images = sub_images.to(self.device)
        
        with torch.no_grad():
            
            # 2. Effectiveness Score
            score_effectiveness = self.proccess_compute_effectiveness_score(sub_index_sets)
        
            # 3. Consistency Score
            score_consistency = self.proccess_compute_consistency_score(batch_input_images)
            
            # 1. Confidence Score
            score_confidence = self.proccess_compute_confidence_score()
            
            # 4. Collaboration Score
            sub_images_reverse = torch.stack([
                self.preproccessing_function(
                    self.org_img - self.merge_image(sub_index_set, partition_image_set)
                ) for sub_index_set in sub_index_sets])
        
            batch_input_images_reverse = sub_images_reverse.to(self.device)
            
            score_collaboration = 1 - self.proccess_compute_consistency_score(batch_input_images_reverse)
            
            # 1. Confidence Score
            # score_confidence = self.proccess_compute_confidence_score()
            
            # submodular score
            smdl_score = self.lambda1 * score_confidence + self.lambda2 * score_effectiveness +  self.lambda3 * score_consistency + self.lambda4 * score_collaboration
            # smdl_score = self.lambda2 * score_effectiveness +  self.lambda3 * score_consistency + self.lambda4 * score_collaboration
            arg_max_index = smdl_score.argmax().cpu().item()
            
            # if self.lambda1 != 0:
            self.saved_json_file["confidence_score"].append(score_confidence[arg_max_index].cpu().item())
            self.saved_json_file["effectiveness_score"].append(score_effectiveness[arg_max_index].cpu().item())
            self.saved_json_file["consistency_score"].append(score_consistency[arg_max_index].cpu().item())
            self.saved_json_file["collaboration_score"].append(score_collaboration[arg_max_index].cpu().item())
            self.saved_json_file["smdl_score"].append(smdl_score[arg_max_index].cpu().item())
        
        return sub_index_sets[arg_max_index]
    
    def save_file_init(self):
        self.saved_json_file = {}
        self.saved_json_file["sub-k"] = self.k
        self.saved_json_file["confidence_score"] = []
        self.saved_json_file["effectiveness_score"] = []
        self.saved_json_file["consistency_score"] = []
        self.saved_json_file["collaboration_score"] = []
        self.saved_json_file["smdl_score"] = []
        self.saved_json_file["lambda1"] = self.lambda1
        self.saved_json_file["lambda2"] = self.lambda2
        self.saved_json_file["lambda3"] = self.lambda3
        self.saved_json_file["lambda4"] = self.lambda4
    
    def calculate_distance_of_each_element(self, partition_image_set):
        """
        Calculate the similarity of each element, obtain a similarity matrix
        """
        with torch.no_grad():
            partition_images = torch.stack([
                self.preproccessing_function(
                    partition_image
                ) for partition_image in partition_image_set]).to(self.device)
            partition_image_features = self.model(partition_images)
            
            norm_feature = F.normalize(partition_image_features, p=2, dim=1)
            # Consine Similarity
            cosine_similarity = torch.mm(norm_feature, norm_feature.t())
            cosine_similarity = torch.clamp(cosine_similarity, min=-1, max=1)
            
            # Normlize 0-1
            self.effectiveness_dist = torch.arccos(cosine_similarity) / math.pi
    
    def get_merge_set(self, partition):
        """
        """
        Subset = np.array([])
        
        indexes = np.arange(len(partition))
        
        # First calculate the similarity of each element to facilitate calculation of effectiveness score.
        self.calculate_distance_of_each_element(partition)
        
        self.smdl_score_best = 0
        
        for j in tqdm(range(self.k)):
            diff = np.setdiff1d(indexes, np.array(Subset))  # in indexes but not in Subset
            
            sub_candidate_indexes = diff
            
            Subset = self.evaluation_maximun_sample(Subset, sub_candidate_indexes, partition)
        
        return Subset
    
    def __call__(self, image_set, id = None):
        """
        Compute Source Face Submodular Score
            @image_set: [mask_image 1, ..., mask_image m] (cv2 format)
        """
        # V_partition = self.partition_collection(image_set)  # [ [image1, image2, ...], [image1, image2, ...], ...  ]
    
        self.save_file_init()
        
        self.org_img = np.array(image_set).sum(0).astype(np.uint8)      
        source_image = self.preproccessing_function(self.org_img)

        self.source_feature = self.model(source_image.unsqueeze(0).to(self.device))
        self.target_label = id
        
        Subset_merge = np.array(image_set)
        Submodular_Subset = self.get_merge_set(Subset_merge)  # array([17, 42, 49, ...])
            
        submodular_image_set = Subset_merge[Submodular_Subset]  # sub_k x (112, 112, 3)
        
        
        submodular_image = submodular_image_set.sum(0).astype(np.uint8)
        self.saved_json_file["smdl_score_max"] = max(self.saved_json_file["smdl_score"])
        self.saved_json_file["smdl_score_max_index"] = self.saved_json_file["smdl_score"].index(self.saved_json_file["smdl_score_max"])
        
        return submodular_image, submodular_image_set, self.saved_json_file