import os import time from dotenv import load_dotenv from langchain_groq import ChatGroq from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.document_loaders import WebBaseLoader from langchain_core.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from datetime import datetime import json import traceback from fastapi import FastAPI, HTTPException, Request from fastapi.responses import JSONResponse from pydantic import BaseModel from api import router as analysis_router from utils import ChatAnalyzer, setup_chat_analysis import requests.exceptions import aiohttp from typing import Union import uvicorn import logging from rich import print as rprint from rich.console import Console from rich.panel import Panel from rich.table import Table console = Console() # Initialize environment variables load_dotenv() # Define constants for directory paths VECTOR_STORE_PATH = "vector_store" CHAT_HISTORY_PATH = "chat_history" def create_required_directories(): """Create required directories if they don't exist""" directories = [VECTOR_STORE_PATH, CHAT_HISTORY_PATH] for directory in directories: try: if not os.path.exists(directory): os.makedirs(directory, exist_ok=True) print(f"Created directory: {directory}") # Create .gitkeep file to preserve empty directory gitkeep_path = os.path.join(directory, '.gitkeep') with open(gitkeep_path, 'w') as f: pass except Exception as e: print(f"Error creating directory {directory}: {str(e)}") raise HTTPException( status_code=500, detail=f"Failed to create required directory: {directory}" ) # Create directories before initializing the app create_required_directories() app = FastAPI(title="Status Law Assistant API") app.include_router(analysis_router) # Add startup event handler to ensure directories exist @app.on_event("startup") async def startup_event(): """Ensure required directories exist on startup""" create_required_directories() # Add custom exception handlers @app.exception_handler(requests.exceptions.RequestException) async def network_error_handler(request: Request, exc: requests.exceptions.RequestException): return JSONResponse( status_code=503, content={ "error": "Network error occurred", "detail": str(exc), "type": "network_error" } ) @app.exception_handler(aiohttp.ClientError) async def aiohttp_error_handler(request: Request, exc: aiohttp.ClientError): return JSONResponse( status_code=503, content={ "error": "Network error occurred", "detail": str(exc), "type": "network_error" } ) # --------------- Model Initialization --------------- def init_models(): """Initialize AI models""" try: llm = ChatGroq( model_name="llama-3.3-70b-versatile", temperature=0.6, api_key=os.getenv("GROQ_API_KEY") ) embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2" ) return llm, embeddings except Exception as e: raise HTTPException(status_code=500, detail=f"Model initialization failed: {str(e)}") # --------------- Knowledge Base Management --------------- URLS = [ "https://status.law", "https://status.law/about", "https://status.law/careers", "https://status.law/tariffs-for-services-against-extradition-en", "https://status.law/challenging-sanctions", "https://status.law/law-firm-contact-legal-protection" "https://status.law/cross-border-banking-legal-issues", "https://status.law/extradition-defense", "https://status.law/international-prosecution-protection", "https://status.law/interpol-red-notice-removal", "https://status.law/practice-areas", "https://status.law/reputation-protection", "https://status.law/faq" ] def build_knowledge_base(_embeddings): """Build or update the knowledge base""" try: start_time = time.time() documents = [] # Ensure vector store directory exists if not os.path.exists(VECTOR_STORE_PATH): os.makedirs(VECTOR_STORE_PATH, exist_ok=True) for url in URLS: try: loader = WebBaseLoader(url) docs = loader.load() documents.extend(docs) except Exception as e: print(f"Failed to load {url}: {str(e)}") continue if not documents: raise HTTPException(status_code=500, detail="No documents loaded") text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=100 ) chunks = text_splitter.split_documents(documents) vector_store = FAISS.from_documents(chunks, _embeddings) vector_store.save_local( folder_path=VECTOR_STORE_PATH, index_name="index" ) if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")): raise HTTPException(status_code=500, detail="FAISS index file not created") return vector_store except Exception as e: raise HTTPException(status_code=500, detail=f"Knowledge base creation failed: {str(e)}") # --------------- API Models --------------- class ChatRequest(BaseModel): message: str class ChatResponse(BaseModel): response: str # --------------- API Routes --------------- @app.post("/chat", response_model=ChatResponse) async def chat_endpoint(request: ChatRequest): try: llm, embeddings = init_models() if not os.path.exists(VECTOR_STORE_PATH): vector_store = build_knowledge_base(embeddings) else: vector_store = FAISS.load_local( VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True ) # Add retry logic for network operations max_retries = 3 retry_count = 0 while retry_count < max_retries: try: context_docs = vector_store.similarity_search(request.message) context_text = "\n".join([d.page_content for d in context_docs]) prompt_template = PromptTemplate.from_template(''' You are a helpful and polite legal assistant at Status Law. You answer in the language in which the question was asked. Answer the question based on the context provided. # ... остальной текст промпта ... Context: {context} Question: {question} Response Guidelines: 1. Answer in the user's language 2. Cite sources when possible 3. Offer contact options if unsure ''') chain = prompt_template | llm | StrOutputParser() response = chain.invoke({ "context": context_text, "question": request.message }) log_interaction(request.message, response, context_text) return ChatResponse(response=response) except (requests.exceptions.RequestException, aiohttp.ClientError) as e: retry_count += 1 if retry_count == max_retries: raise HTTPException( status_code=503, detail={ "error": "Network error after maximum retries", "detail": str(e), "type": "network_error" } ) await asyncio.sleep(1 * retry_count) # Exponential backoff except Exception as e: if isinstance(e, (requests.exceptions.RequestException, aiohttp.ClientError)): raise HTTPException( status_code=503, detail={ "error": "Network error occurred", "detail": str(e), "type": "network_error" } ) raise HTTPException(status_code=500, detail=str(e)) # --------------- Logging --------------- def log_interaction(user_input: str, bot_response: str, context: str): try: log_entry = { "timestamp": datetime.now().isoformat(), "user_input": user_input, "bot_response": bot_response, "context": context[:500], "kb_version": datetime.now().strftime("%Y%m%d-%H%M%S") } os.makedirs("chat_history", exist_ok=True) log_path = os.path.join("chat_history", "chat_logs.json") with open(log_path, "a", encoding="utf-8") as f: f.write(json.dumps(log_entry, ensure_ascii=False) + "\n") except Exception as e: print(f"Logging error: {str(e)}") print(traceback.format_exc()) # Add health check endpoint @app.get("/health") async def health_check(): try: # Check if models can be initialized llm, embeddings = init_models() # Check if vector store is accessible if os.path.exists(VECTOR_STORE_PATH): vector_store = FAISS.load_local( VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True ) return { "status": "healthy", "vector_store": "available" if os.path.exists(VECTOR_STORE_PATH) else "not_found" } except Exception as e: return JSONResponse( status_code=503, content={ "status": "unhealthy", "error": str(e) } ) # Add diagnostic endpoint @app.get("/directory-status") async def check_directory_status(): """Check status of required directories""" return { "vector_store": { "exists": os.path.exists(VECTOR_STORE_PATH), "path": os.path.abspath(VECTOR_STORE_PATH), "contents": os.listdir(VECTOR_STORE_PATH) if os.path.exists(VECTOR_STORE_PATH) else [] }, "chat_history": { "exists": os.path.exists(CHAT_HISTORY_PATH), "path": os.path.abspath(CHAT_HISTORY_PATH), "contents": os.listdir(CHAT_HISTORY_PATH) if os.path.exists(CHAT_HISTORY_PATH) else [] } } # Добавим функцию для вывода статуса def print_startup_status(): """Print application startup status with rich formatting""" try: # Create status table table = Table(show_header=True, header_style="bold magenta") table.add_column("Component", style="cyan") table.add_column("Status", style="green") # Check directories vector_store_exists = os.path.exists(VECTOR_STORE_PATH) chat_history_exists = os.path.exists(CHAT_HISTORY_PATH) table.add_row( "Vector Store Directory", "✅ Created" if vector_store_exists else "❌ Missing" ) table.add_row( "Chat History Directory", "✅ Created" if chat_history_exists else "❌ Missing" ) # Check environment variables table.add_row( "GROQ API Key", "✅ Set" if os.getenv("GROQ_API_KEY") else "❌ Missing" ) # Create status panel status_panel = Panel( table, title="[bold blue]Status Law Assistant API Status[/bold blue]", border_style="blue" ) # Print startup message and status console.print("\n") console.print("[bold green]🚀 Server started successfully![/bold green]") console.print(status_panel) console.print("\n[bold yellow]API Documentation:[/bold yellow]") console.print("📚 Swagger UI: http://0.0.0.0:8000/docs") console.print("📘 ReDoc: http://0.0.0.0:8000/redoc\n") except Exception as e: console.print(f"[bold red]Error printing status: {str(e)}[/bold red]") if __name__ == "__main__": config = uvicorn.Config( "app:app", host="0.0.0.0", port=8000, log_level="info", reload=True ) server = uvicorn.Server(config) try: # Start the server console.print("[bold yellow]Starting Status Law Assistant API...[/bold yellow]") server.run() except Exception as e: console.print(f"[bold red]Server failed to start: {str(e)}[/bold red]") finally: # Print startup status after uvicorn starts print_startup_status()