Doc-chat / app.py
Rulga's picture
change python 3.11 slim and others
350af29
raw
history blame
14.7 kB
import os
import time
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from datetime import datetime
import json
import traceback
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from api import router as analysis_router
from utils import ChatAnalyzer, setup_chat_analysis
import requests.exceptions
import aiohttp
from typing import Union
import uvicorn
import logging
from rich import print as rprint
from rich.console import Console
from rich.panel import Panel
from rich.table import Table
console = Console()
# Настройка логирования
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize environment variables
load_dotenv()
logger.debug("Environment variables loaded")
# Define constants for directory paths
VECTOR_STORE_PATH = os.path.join(os.getcwd(), "vector_store")
CHAT_HISTORY_PATH = os.path.join(os.getcwd(), "chat_history")
logger.debug(f"Paths initialized: VECTOR_STORE_PATH={VECTOR_STORE_PATH}, CHAT_HISTORY_PATH={CHAT_HISTORY_PATH}")
def create_required_directories():
"""Create required directories if they don't exist"""
try:
for directory in [VECTOR_STORE_PATH, CHAT_HISTORY_PATH]:
os.makedirs(directory, exist_ok=True)
gitkeep_path = os.path.join(directory, '.gitkeep')
if not os.path.exists(gitkeep_path):
with open(gitkeep_path, 'w') as f:
pass
logger.debug(f"Directory created/verified: {directory}")
except Exception as e:
logger.error(f"Error creating directories: {str(e)}")
raise
# Create directories before initializing the app
create_required_directories()
app = FastAPI(title="Status Law Assistant API")
app.include_router(analysis_router)
# Add startup event handler to ensure directories exist
@app.on_event("startup")
async def startup_event():
"""Startup event handler"""
try:
logger.info("Starting application...")
# Проверяем наличие необходимых переменных окружения
if not os.getenv("GROQ_API_KEY"):
logger.error("GROQ_API_KEY not found in environment variables")
raise ValueError("GROQ_API_KEY is required")
# Проверяем доступность директорий
for directory in [VECTOR_STORE_PATH, CHAT_HISTORY_PATH]:
if not os.path.exists(directory):
logger.error(f"Required directory not found: {directory}")
raise ValueError(f"Required directory not found: {directory}")
logger.info("Application startup completed successfully")
except Exception as e:
logger.error(f"Startup failed: {str(e)}")
raise
@app.on_event("shutdown")
async def shutdown_event():
"""Shutdown event handler"""
logger.info("Application shutting down...")
# Базовый маршрут для проверки
@app.get("/")
async def root():
logger.debug("Root endpoint called")
return {
"status": "ok",
"message": "Status Law Assistant API is running",
"environment": {
"GROQ_API_KEY": "configured" if os.getenv("GROQ_API_KEY") else "missing",
"vector_store": os.path.exists(VECTOR_STORE_PATH),
"chat_history": os.path.exists(CHAT_HISTORY_PATH)
}
}
# Add custom exception handlers
@app.exception_handler(requests.exceptions.RequestException)
async def network_error_handler(request: Request, exc: requests.exceptions.RequestException):
return JSONResponse(
status_code=503,
content={
"error": "Network error occurred",
"detail": str(exc),
"type": "network_error"
}
)
@app.exception_handler(aiohttp.ClientError)
async def aiohttp_error_handler(request: Request, exc: aiohttp.ClientError):
return JSONResponse(
status_code=503,
content={
"error": "Network error occurred",
"detail": str(exc),
"type": "network_error"
}
)
# --------------- Model Initialization ---------------
def init_models():
"""Initialize AI models"""
try:
llm = ChatGroq(
model_name="llama-3.3-70b-versatile",
temperature=0.6,
api_key=os.getenv("GROQ_API_KEY")
)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
return llm, embeddings
except Exception as e:
raise HTTPException(status_code=500, detail=f"Model initialization failed: {str(e)}")
# --------------- Knowledge Base Management ---------------
URLS = [
"https://status.law",
"https://status.law/about",
"https://status.law/careers",
"https://status.law/tariffs-for-services-against-extradition-en",
"https://status.law/challenging-sanctions",
"https://status.law/law-firm-contact-legal-protection"
"https://status.law/cross-border-banking-legal-issues",
"https://status.law/extradition-defense",
"https://status.law/international-prosecution-protection",
"https://status.law/interpol-red-notice-removal",
"https://status.law/practice-areas",
"https://status.law/reputation-protection",
"https://status.law/faq"
]
def build_knowledge_base(_embeddings):
"""Build or update the knowledge base"""
try:
start_time = time.time()
documents = []
# Ensure vector store directory exists
if not os.path.exists(VECTOR_STORE_PATH):
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
for url in URLS:
try:
loader = WebBaseLoader(url)
docs = loader.load()
documents.extend(docs)
except Exception as e:
print(f"Failed to load {url}: {str(e)}")
continue
if not documents:
raise HTTPException(status_code=500, detail="No documents loaded")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100
)
chunks = text_splitter.split_documents(documents)
vector_store = FAISS.from_documents(chunks, _embeddings)
vector_store.save_local(
folder_path=VECTOR_STORE_PATH,
index_name="index"
)
if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
raise HTTPException(status_code=500, detail="FAISS index file not created")
return vector_store
except Exception as e:
raise HTTPException(status_code=500, detail=f"Knowledge base creation failed: {str(e)}")
# --------------- API Models ---------------
class ChatRequest(BaseModel):
message: str
class ChatResponse(BaseModel):
response: str
# --------------- API Routes ---------------
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
try:
llm, embeddings = init_models()
if not os.path.exists(VECTOR_STORE_PATH):
vector_store = build_knowledge_base(embeddings)
else:
vector_store = FAISS.load_local(
VECTOR_STORE_PATH,
embeddings,
allow_dangerous_deserialization=True
)
# Add retry logic for network operations
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
context_docs = vector_store.similarity_search(request.message)
context_text = "\n".join([d.page_content for d in context_docs])
prompt_template = PromptTemplate.from_template('''
You are a helpful and polite legal assistant at Status Law.
You answer in the language in which the question was asked.
Answer the question based on the context provided.
# ... остальной текст промпта ...
Context: {context}
Question: {question}
Response Guidelines:
1. Answer in the user's language
2. Cite sources when possible
3. Offer contact options if unsure
''')
chain = prompt_template | llm | StrOutputParser()
response = chain.invoke({
"context": context_text,
"question": request.message
})
log_interaction(request.message, response, context_text)
return ChatResponse(response=response)
except (requests.exceptions.RequestException, aiohttp.ClientError) as e:
retry_count += 1
if retry_count == max_retries:
raise HTTPException(
status_code=503,
detail={
"error": "Network error after maximum retries",
"detail": str(e),
"type": "network_error"
}
)
await asyncio.sleep(1 * retry_count) # Exponential backoff
except Exception as e:
if isinstance(e, (requests.exceptions.RequestException, aiohttp.ClientError)):
raise HTTPException(
status_code=503,
detail={
"error": "Network error occurred",
"detail": str(e),
"type": "network_error"
}
)
raise HTTPException(status_code=500, detail=str(e))
# --------------- Logging ---------------
def log_interaction(user_input: str, bot_response: str, context: str):
try:
log_entry = {
"timestamp": datetime.now().isoformat(),
"user_input": user_input,
"bot_response": bot_response,
"context": context[:500],
"kb_version": datetime.now().strftime("%Y%m%d-%H%M%S")
}
os.makedirs("chat_history", exist_ok=True)
log_path = os.path.join("chat_history", "chat_logs.json")
with open(log_path, "a", encoding="utf-8") as f:
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
except Exception as e:
print(f"Logging error: {str(e)}")
print(traceback.format_exc())
# Add health check endpoint
@app.get("/health")
async def health_check():
try:
# Check if models can be initialized
llm, embeddings = init_models()
# Check if vector store is accessible
if os.path.exists(VECTOR_STORE_PATH):
vector_store = FAISS.load_local(
VECTOR_STORE_PATH,
embeddings,
allow_dangerous_deserialization=True
)
return {
"status": "healthy",
"vector_store": "available" if os.path.exists(VECTOR_STORE_PATH) else "not_found"
}
except Exception as e:
return JSONResponse(
status_code=503,
content={
"status": "unhealthy",
"error": str(e)
}
)
# Add diagnostic endpoint
@app.get("/directory-status")
async def check_directory_status():
"""Check status of required directories"""
return {
"vector_store": {
"exists": os.path.exists(VECTOR_STORE_PATH),
"path": os.path.abspath(VECTOR_STORE_PATH),
"contents": os.listdir(VECTOR_STORE_PATH) if os.path.exists(VECTOR_STORE_PATH) else []
},
"chat_history": {
"exists": os.path.exists(CHAT_HISTORY_PATH),
"path": os.path.abspath(CHAT_HISTORY_PATH),
"contents": os.listdir(CHAT_HISTORY_PATH) if os.path.exists(CHAT_HISTORY_PATH) else []
}
}
# Добавим функцию для вывода статуса
def print_startup_status():
"""Print application startup status with rich formatting"""
try:
# Create status table
table = Table(show_header=True, header_style="bold magenta")
table.add_column("Component", style="cyan")
table.add_column("Status", style="green")
# Check directories
vector_store_exists = os.path.exists(VECTOR_STORE_PATH)
chat_history_exists = os.path.exists(CHAT_HISTORY_PATH)
table.add_row(
"Vector Store Directory",
"✅ Created" if vector_store_exists else "❌ Missing"
)
table.add_row(
"Chat History Directory",
"✅ Created" if chat_history_exists else "❌ Missing"
)
# Check environment variables
table.add_row(
"GROQ API Key",
"✅ Set" if os.getenv("GROQ_API_KEY") else "❌ Missing"
)
# Create status panel
status_panel = Panel(
table,
title="[bold blue]Status Law Assistant API Status[/bold blue]",
border_style="blue"
)
# Print startup message and status
console.print("\n")
console.print("[bold green]🚀 Server started successfully![/bold green]")
console.print(status_panel)
console.print("\n[bold yellow]API Documentation:[/bold yellow]")
console.print("📚 Swagger UI: http://0.0.0.0:8000/docs")
console.print("📘 ReDoc: http://0.0.0.0:8000/redoc\n")
except Exception as e:
console.print(f"[bold red]Error printing status: {str(e)}[/bold red]")
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", 8000))
logger.info(f"Starting server on port {port}")
config = uvicorn.Config(
app,
host="0.0.0.0",
port=port,
log_level="debug"
)
server = uvicorn.Server(config)
server.run()