Doc-chat / app.py
Rulga's picture
Update README and enhance app.py with Docker support, improved logging, and URL content loading
1fc15a8
raw
history blame
10.1 kB
import os
import time
import sys
import json
import traceback
import warnings
from datetime import datetime
from typing import Optional, List, Dict
import requests
from bs4 import BeautifulSoup
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader, BSHTMLLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.tracers import ConsoleCallbackHandler
from langchain_core.callbacks import CallbackManager
from langchain_core.documents import Document
# Ignore SSL warnings
warnings.filterwarnings('ignore')
# Initialize environment variables
load_dotenv()
# Initialize FastAPI app
app = FastAPI(title="Status Law Assistant API")
# Models for request/response
class ChatRequest(BaseModel):
message: str
class ChatResponse(BaseModel):
response: str
context: Optional[str] = None
# Global variables
VECTOR_STORE_PATH = "vector_store"
URLS = [
"https://status.law",
"https://status.law/about",
"https://status.law/careers",
"https://status.law/tariffs-for-services-of-protection-against-extradition",
"https://status.law/challenging-sanctions",
"https://status.law/law-firm-contact-legal-protection",
"https://status.law/cross-border-banking-legal-issues",
"https://status.law/extradition-defense",
"https://status.law/international-prosecution-protection",
"https://status.law/interpol-red-notice-removal",
"https://status.law/practice-areas",
"https://status.law/reputation-protection",
"https://status.law/faq"
]
# Check write permissions
try:
if not os.path.exists(VECTOR_STORE_PATH):
os.makedirs(VECTOR_STORE_PATH)
test_file_path = os.path.join(VECTOR_STORE_PATH, 'test_write.txt')
with open(test_file_path, 'w') as f:
f.write('test')
os.remove(test_file_path)
print(f"Write permissions OK for {VECTOR_STORE_PATH}")
except Exception as e:
print(f"WARNING: No write permissions for {VECTOR_STORE_PATH}: {str(e)}")
print("Current working directory:", os.getcwd())
print("User:", os.getenv('USER'))
sys.exit(1)
# Enhanced logging
class CustomCallbackHandler(ConsoleCallbackHandler):
def on_chain_end(self, run):
log_entry = {
"timestamp": datetime.now().isoformat(),
"run_id": str(run.id),
"inputs": run.inputs,
"outputs": run.outputs,
"execution_time": run.end_time - run.start_time if run.end_time else None,
"metadata": run.metadata
}
os.makedirs("chat_history", exist_ok=True)
with open("chat_history/detailed_logs.json", "a", encoding="utf-8") as f:
json.dump(log_entry, f, ensure_ascii=False)
f.write("\n")
def init_models():
try:
callback_handler = CustomCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = ChatGroq(
model_name="llama-3.3-70b-versatile",
temperature=0.6,
api_key=os.getenv("GROQ_API_KEY"),
callback_manager=callback_manager
)
embeddings = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-large-instruct"
)
return llm, embeddings
except Exception as e:
raise Exception(f"Model initialization failed: {str(e)}")
def check_url_availability(url: str) -> bool:
try:
response = requests.get(url, verify=False, timeout=10)
return response.status_code == 200
except Exception as e:
print(f"Error checking {url}: {str(e)}")
return False
def load_url_content(url: str) -> List[Document]:
try:
response = requests.get(url, verify=False, timeout=30)
if response.status_code != 200:
print(f"Failed to load {url}, status code: {response.status_code}")
return []
soup = BeautifulSoup(response.text, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text content
text = soup.get_text()
# Clean up text
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return [Document(page_content=text, metadata={"source": url})]
except Exception as e:
print(f"Error processing {url}: {str(e)}")
return []
def build_knowledge_base(embeddings):
try:
documents = []
os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
print("Starting to load documents...")
# First check which URLs are available
available_urls = [url for url in URLS if check_url_availability(url)]
print(f"\nAccessible URLs: {len(available_urls)} out of {len(URLS)}")
# Load content from available URLs
for url in available_urls:
try:
print(f"\nProcessing {url}")
docs = load_url_content(url)
if docs:
documents.extend(docs)
print(f"Successfully loaded content from {url}")
else:
print(f"No content extracted from {url}")
except Exception as e:
print(f"Failed to process {url}: {str(e)}")
continue
if not documents:
raise Exception("No documents were successfully loaded!")
print(f"\nTotal documents loaded: {len(documents)}")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=100
)
print("Splitting documents into chunks...")
chunks = text_splitter.split_documents(documents)
print(f"Created {len(chunks)} chunks")
print("Creating vector store...")
vector_store = FAISS.from_documents(chunks, embeddings)
print("Saving vector store...")
vector_store.save_local(folder_path=VECTOR_STORE_PATH, index_name="index")
return vector_store
except Exception as e:
print(f"Error in build_knowledge_base: {str(e)}")
traceback.print_exc()
raise Exception(f"Knowledge base creation failed: {str(e)}")
# Initialize models and knowledge base on startup
llm, embeddings = init_models()
vector_store = None
if os.path.exists(VECTOR_STORE_PATH):
try:
vector_store = FAISS.load_local(
VECTOR_STORE_PATH,
embeddings,
allow_dangerous_deserialization=True
)
except Exception as e:
print(f"Failed to load existing knowledge base: {str(e)}")
if vector_store is None:
vector_store = build_knowledge_base(embeddings)
# API endpoints
# API endpoints
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
try:
# Retrieve context
context_docs = vector_store.similarity_search(request.message)
context_text = "\n".join([d.page_content for d in context_docs])
# Generate response
prompt_template = PromptTemplate.from_template('''
You are a helpful and polite legal assistant at Status Law.
You answer in the language in which the question was asked.
Answer the question based on the context provided.
If you cannot answer based on the context, say so politely and offer to contact Status Law directly via the following channels:
- For all users: +32465594521 (landline phone).
- For English and Swedish speakers only: +46728495129 (available on WhatsApp, Telegram, Signal, IMO).
- Provide a link to the contact form: [Contact Form](https://status.law/law-firm-contact-legal-protection/).
Context: {context}
Question: {question}
Response Guidelines:
1. Answer in the user's language
2. Cite sources when possible
3. Offer contact options if unsure
''')
chain = prompt_template | llm | StrOutputParser()
response = chain.invoke({
"context": context_text,
"question": request.message
})
# Log interaction
log_interaction(request.message, response, context_text)
return ChatResponse(response=response, context=context_text)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/rebuild-kb")
async def rebuild_knowledge_base():
try:
global vector_store
vector_store = build_knowledge_base(embeddings)
return {"status": "success", "message": "Knowledge base rebuilt successfully"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def log_interaction(user_input: str, bot_response: str, context: str):
try:
log_entry = {
"timestamp": datetime.now().isoformat(),
"user_input": user_input,
"bot_response": bot_response,
"context": context[:500],
"kb_version": "1.1" # You might want to implement version tracking
}
os.makedirs("chat_history", exist_ok=True)
with open("chat_history/chat_logs.json", "a", encoding="utf-8") as f:
f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
except Exception as e:
print(f"Logging error: {str(e)}")
print(traceback.format_exc())
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)