File size: 14,484 Bytes
68b95db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import time
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from datetime import datetime
import json
import traceback
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from api import router as analysis_router
from utils import ChatAnalyzer, setup_chat_analysis
import requests.exceptions
import aiohttp
from typing import Union
import uvicorn
import logging
from rich import print as rprint
from rich.console import Console
from rich.panel import Panel
from rich.table import Table

console = Console()

# Базовая настройка логирования
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Определение путей
VECTOR_STORE_PATH = os.path.join(os.getcwd(), "vector_store")
CHAT_HISTORY_PATH = os.path.join(os.getcwd(), "chat_history")

app = FastAPI(title="Status Law Assistant API")

class ChatRequest(BaseModel):
    message: str

class ChatResponse(BaseModel):
    response: str

def check_vector_store():
    """Проверка наличия векторной базы"""
    index_path = os.path.join(VECTOR_STORE_PATH, "index.faiss")
    return os.path.exists(index_path)

@app.get("/")
async def root():
    """Базовый эндпоинт с информацией о состоянии"""
    return {
        "status": "ok",
        "vector_store_ready": check_vector_store(),
        "timestamp": datetime.now().isoformat()
    }

@app.get("/status")
async def get_status():
    """Получение статуса векторной базы"""
    return {
        "vector_store_exists": check_vector_store(),
        "can_chat": check_vector_store(),
        "vector_store_path": VECTOR_STORE_PATH
    }

@app.post("/build-knowledge-base")
async def build_kb():
    """Эндпоинт для построения базы знаний"""
    try:
        if check_vector_store():
            return {
                "status": "exists",
                "message": "Knowledge base already exists"
            }
        
        # Инициализируем embeddings только когда нужно построить базу
        embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-MiniLM-L6-v2"
        )
        vector_store = build_knowledge_base(embeddings)
        
        return {
            "status": "success",
            "message": "Knowledge base built successfully"
        }
    except Exception as e:
        logger.error(f"Failed to build knowledge base: {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Failed to build knowledge base: {str(e)}"
        )

@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
    """Эндпоинт чата"""
    if not check_vector_store():
        raise HTTPException(
            status_code=400,
            detail="Knowledge base not found. Please build it first using /build-knowledge-base endpoint"
        )
    
    try:
        # Инициализируем компоненты только при необходимости
        llm = ChatGroq(
            model_name="llama-3.3-70b-versatile",
            temperature=0.6,
            api_key=os.getenv("GROQ_API_KEY")
        )
        
        embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-MiniLM-L6-v2"
        )
        
        vector_store = FAISS.load_local(
            VECTOR_STORE_PATH,
            embeddings,
            allow_dangerous_deserialization=True
        )

        # Остальная логика чата...
        context_docs = vector_store.similarity_search(request.message)
        context_text = "\n".join([d.page_content for d in context_docs])
        
        prompt_template = PromptTemplate.from_template('''
            You are a helpful and polite legal assistant at Status Law.
            Answer the question based on the context provided.
            Context: {context}
            Question: {question}
        ''')
        
        chain = prompt_template | llm | StrOutputParser()
        response = chain.invoke({
            "context": context_text,
            "question": request.message
        })
        
        return ChatResponse(response=response)
        
    except Exception as e:
        logger.error(f"Chat error: {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Chat error: {str(e)}"
        )

# --------------- Knowledge Base Management ---------------
URLS = [
    "https://status.law",
    "https://status.law/about",
    "https://status.law/careers",  
    "https://status.law/tariffs-for-services-against-extradition-en",
    "https://status.law/challenging-sanctions",
    "https://status.law/law-firm-contact-legal-protection"
    "https://status.law/cross-border-banking-legal-issues", 
    "https://status.law/extradition-defense", 
    "https://status.law/international-prosecution-protection", 
    "https://status.law/interpol-red-notice-removal",  
    "https://status.law/practice-areas",  
    "https://status.law/reputation-protection",
    "https://status.law/faq"
]

def build_knowledge_base(_embeddings):
    """Build or update the knowledge base"""
    try:
        start_time = time.time()
        documents = []
        
        # Ensure vector store directory exists
        if not os.path.exists(VECTOR_STORE_PATH):
            os.makedirs(VECTOR_STORE_PATH, exist_ok=True)
        
        for url in URLS:
            try:
                loader = WebBaseLoader(url)
                docs = loader.load()
                documents.extend(docs)
            except Exception as e:
                print(f"Failed to load {url}: {str(e)}")
                continue

        if not documents:
            raise HTTPException(status_code=500, detail="No documents loaded")

        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=100
        )
        chunks = text_splitter.split_documents(documents)
        
        vector_store = FAISS.from_documents(chunks, _embeddings)
        vector_store.save_local(
            folder_path=VECTOR_STORE_PATH,
            index_name="index"
        )
        
        if not os.path.exists(os.path.join(VECTOR_STORE_PATH, "index.faiss")):
            raise HTTPException(status_code=500, detail="FAISS index file not created")
            
        return vector_store
            
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Knowledge base creation failed: {str(e)}")

# --------------- API Models ---------------
class ChatRequest(BaseModel):
    message: str

class ChatResponse(BaseModel):
    response: str

# --------------- API Routes ---------------
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
    try:
        llm, embeddings = init_models()
        
        if not os.path.exists(VECTOR_STORE_PATH):
            vector_store = build_knowledge_base(embeddings)
        else:
            vector_store = FAISS.load_local(
                VECTOR_STORE_PATH,
                embeddings,
                allow_dangerous_deserialization=True
            )

        # Add retry logic for network operations
        max_retries = 3
        retry_count = 0
        
        while retry_count < max_retries:
            try:
                context_docs = vector_store.similarity_search(request.message)
                context_text = "\n".join([d.page_content for d in context_docs])
                
                prompt_template = PromptTemplate.from_template('''
                    You are a helpful and polite legal assistant at Status Law.
                    You answer in the language in which the question was asked.
                    Answer the question based on the context provided.
                    
                    # ... остальной текст промпта ...

                    Context: {context}
                    Question: {question}
                    
                    Response Guidelines:
                    1. Answer in the user's language
                    2. Cite sources when possible
                    3. Offer contact options if unsure
                    ''')
                
                chain = prompt_template | llm | StrOutputParser()
                response = chain.invoke({
                    "context": context_text,
                    "question": request.message
                })
                
                log_interaction(request.message, response, context_text)
                return ChatResponse(response=response)
                
            except (requests.exceptions.RequestException, aiohttp.ClientError) as e:
                retry_count += 1
                if retry_count == max_retries:
                    raise HTTPException(
                        status_code=503,
                        detail={
                            "error": "Network error after maximum retries",
                            "detail": str(e),
                            "type": "network_error"
                        }
                    )
                await asyncio.sleep(1 * retry_count)  # Exponential backoff
                
    except Exception as e:
        if isinstance(e, (requests.exceptions.RequestException, aiohttp.ClientError)):
            raise HTTPException(
                status_code=503,
                detail={
                    "error": "Network error occurred",
                    "detail": str(e),
                    "type": "network_error"
                }
            )
        raise HTTPException(status_code=500, detail=str(e))

# --------------- Logging ---------------
def log_interaction(user_input: str, bot_response: str, context: str):
    try:
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "user_input": user_input,
            "bot_response": bot_response,
            "context": context[:500],
            "kb_version": datetime.now().strftime("%Y%m%d-%H%M%S")
        }
        
        os.makedirs("chat_history", exist_ok=True)
        log_path = os.path.join("chat_history", "chat_logs.json")
        
        with open(log_path, "a", encoding="utf-8") as f:
            f.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
            
    except Exception as e:
        print(f"Logging error: {str(e)}")
        print(traceback.format_exc())

# Add health check endpoint
@app.get("/health")
async def health_check():
    try:
        # Check if models can be initialized
        llm, embeddings = init_models()
        
        # Check if vector store is accessible
        if os.path.exists(VECTOR_STORE_PATH):
            vector_store = FAISS.load_local(
                VECTOR_STORE_PATH,
                embeddings,
                allow_dangerous_deserialization=True
            )
        
        return {
            "status": "healthy",
            "vector_store": "available" if os.path.exists(VECTOR_STORE_PATH) else "not_found"
        }
        
    except Exception as e:
        return JSONResponse(
            status_code=503,
            content={
                "status": "unhealthy",
                "error": str(e)
            }
        )

# Add diagnostic endpoint
@app.get("/directory-status")
async def check_directory_status():
    """Check status of required directories"""
    return {
        "vector_store": {
            "exists": os.path.exists(VECTOR_STORE_PATH),
            "path": os.path.abspath(VECTOR_STORE_PATH),
            "contents": os.listdir(VECTOR_STORE_PATH) if os.path.exists(VECTOR_STORE_PATH) else []
        },
        "chat_history": {
            "exists": os.path.exists(CHAT_HISTORY_PATH),
            "path": os.path.abspath(CHAT_HISTORY_PATH),
            "contents": os.listdir(CHAT_HISTORY_PATH) if os.path.exists(CHAT_HISTORY_PATH) else []
        }
    }

# Добавим функцию для вывода статуса
def print_startup_status():
    """Print application startup status with rich formatting"""
    try:
        # Create status table
        table = Table(show_header=True, header_style="bold magenta")
        table.add_column("Component", style="cyan")
        table.add_column("Status", style="green")
        
        # Check directories
        vector_store_exists = os.path.exists(VECTOR_STORE_PATH)
        chat_history_exists = os.path.exists(CHAT_HISTORY_PATH)
        
        table.add_row(
            "Vector Store Directory",
            "✅ Created" if vector_store_exists else "❌ Missing"
        )
        table.add_row(
            "Chat History Directory",
            "✅ Created" if chat_history_exists else "❌ Missing"
        )
        
        # Check environment variables
        table.add_row(
            "GROQ API Key",
            "✅ Set" if os.getenv("GROQ_API_KEY") else "❌ Missing"
        )
        
        # Create status panel
        status_panel = Panel(
            table,
            title="[bold blue]Status Law Assistant API Status[/bold blue]",
            border_style="blue"
        )
        
        # Print startup message and status
        console.print("\n")
        console.print("[bold green]🚀 Server started successfully![/bold green]")
        console.print(status_panel)
        console.print("\n[bold yellow]API Documentation:[/bold yellow]")
        console.print("📚 Swagger UI: http://0.0.0.0:8000/docs")
        console.print("📘 ReDoc: http://0.0.0.0:8000/redoc\n")
        
    except Exception as e:
        console.print(f"[bold red]Error printing status: {str(e)}[/bold red]")

if __name__ == "__main__":
    import uvicorn
    
    port = int(os.getenv("PORT", 8000))
    logger.info(f"Starting server on port {port}")
    
    config = uvicorn.Config(
        app,
        host="0.0.0.0",
        port=port,
        log_level="debug"
    )
    
    server = uvicorn.Server(config)
    server.run()