Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
CHANGED
@@ -183,113 +183,116 @@ def error(option):
|
|
183 |
|
184 |
### If you insert an image
|
185 |
if uploaded_file is not None:
|
186 |
-
|
187 |
-
|
188 |
-
st.sidebar.markdown("<h1 style='text-align: center;'>Compound's filter</h1>",unsafe_allow_html=True)
|
189 |
-
## Write the compound
|
190 |
-
st.sidebar.markdown('''
|
191 |
-
<h4 style='text-align: center;'>This controller sidebar is used to filter the compounds by the following features</h4>
|
192 |
-
|
193 |
-
- Molecular weight : is the weight of a compound in grame per mol
|
194 |
-
- LogP : it measures how hydrophilic or hydrophobic a compound is
|
195 |
-
- NumDonnors : number of chemical components that are able to deliver electrons to other chemical components
|
196 |
-
- NumAcceptors : number of chemical components that are able to accept electrons to other chemical components
|
197 |
-
''',unsafe_allow_html=True)
|
198 |
-
weight_cutoff = st.sidebar.slider(
|
199 |
-
label="Molecular weight",
|
200 |
-
min_value=0,
|
201 |
-
max_value=1000,
|
202 |
-
value=500,
|
203 |
-
step=10,
|
204 |
-
help="Look for compounds that have less or equal molecular weight than the value selected"
|
205 |
-
)
|
206 |
-
logp_cutoff = st.sidebar.slider(
|
207 |
-
label="LogP",
|
208 |
-
min_value=-10,
|
209 |
-
max_value=10,
|
210 |
-
value=5,
|
211 |
-
step=1,
|
212 |
-
help="Look for compounds that have less or equal logp than the value selected"
|
213 |
-
)
|
214 |
-
NumHDonors_cutoff = st.sidebar.slider(
|
215 |
-
label="NumHDonors",
|
216 |
-
min_value=0,
|
217 |
-
max_value=15,
|
218 |
-
value=5,
|
219 |
-
step=1,
|
220 |
-
help="Look for compounds that have less or equal donors weight than the value selected"
|
221 |
-
)
|
222 |
-
NumHAcceptors_cutoff = st.sidebar.slider(
|
223 |
-
label="NumHAcceptors",
|
224 |
-
min_value=0,
|
225 |
-
max_value=20,
|
226 |
-
value=10,
|
227 |
-
step=1,
|
228 |
-
help="Look for compounds that have less or equal acceptors weight than the value selected"
|
229 |
-
)
|
230 |
-
max_phase = st.sidebar.multiselect("Phase of the compound",
|
231 |
-
['1','2', '3', '4'],
|
232 |
-
help="""
|
233 |
-
- Phase 1 : Phase I of the compound in progress
|
234 |
-
- Phase 2 : Phase II of the compound in progress
|
235 |
-
- Phase 3 : Phase III of the compound in progress
|
236 |
-
- Phase 4 : Approved compound
|
237 |
-
"""
|
238 |
-
)
|
239 |
-
|
240 |
#### Read an image
|
241 |
|
242 |
|
243 |
imgdef = read_image(uploaded_file)
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
model.eval()
|
253 |
-
pr = outputprob2(imgdef,model)
|
254 |
-
|
255 |
-
# Sort results by the descending probability order
|
256 |
-
pr = dict( sorted(pr.items(), key=operator.itemgetter(1),reverse=True))
|
257 |
-
# Select the treatment
|
258 |
-
option = st.sidebar.selectbox('Select the treatment you believe for these illness',list(pr.keys()))
|
259 |
-
col1,col2,col3 = st.columns((1,1,1))
|
260 |
-
cnt = 1
|
261 |
-
for (key,value) in pr.items():
|
262 |
-
if cnt%3==1:
|
263 |
-
col1.metric(label=key, value=str(cnt), delta=str(value))
|
264 |
-
if cnt%3==2:
|
265 |
-
col2.metric(label=key, value=str(cnt), delta=str(value))
|
266 |
-
if cnt%3==0:
|
267 |
-
col3.metric(label=key, value=str(cnt), delta=str(value))
|
268 |
-
cnt+=1
|
269 |
-
# temp = st.expander("Compunds to take care of {}".format(key))
|
270 |
-
#### Get the compounds for the anomaly selected
|
271 |
-
df = getdrugs(option,max_phase)
|
272 |
-
st.markdown("<h3 style='text-align: center;'>Compounds for {}</h3>".format(option),unsafe_allow_html=True)
|
273 |
-
### If exists the compounds
|
274 |
-
if df is not None:
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
-
|
284 |
-
if len(df_result4)==0:
|
285 |
-
|
286 |
-
error(option)
|
287 |
-
else:
|
288 |
-
raw_html = mols2grid.display(df_result, mapping={"smiles": "SMILES","pref_name":"Name","Acceptors":"Acceptors","Donnors":"Donnors","Logp":"Logp","mol_weight":"mol_weight"},
|
289 |
-
subset=["img","Name"],tooltip=["Name","Acceptors","Donnors","Logp","mol_weight"],tooltip_placement="top",tooltip_trigger="click hover")._repr_html_()
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
|
|
183 |
|
184 |
### If you insert an image
|
185 |
if uploaded_file is not None:
|
186 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
#### Read an image
|
188 |
|
189 |
|
190 |
imgdef = read_image(uploaded_file)
|
191 |
+
else:
|
192 |
+
imgdef = read_image("example.dcm")
|
193 |
+
## Controller header
|
194 |
+
|
195 |
+
st.sidebar.markdown("<h1 style='text-align: center;'>Compound's filter</h1>",unsafe_allow_html=True)
|
196 |
+
## Write the compound
|
197 |
+
st.sidebar.markdown('''
|
198 |
+
<h4 style='text-align: center;'>This controller sidebar is used to filter the compounds by the following features</h4>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
+
- Molecular weight : is the weight of a compound in grame per mol
|
201 |
+
- LogP : it measures how hydrophilic or hydrophobic a compound is
|
202 |
+
- NumDonnors : number of chemical components that are able to deliver electrons to other chemical components
|
203 |
+
- NumAcceptors : number of chemical components that are able to accept electrons to other chemical components
|
204 |
+
''',unsafe_allow_html=True)
|
205 |
+
weight_cutoff = st.sidebar.slider(
|
206 |
+
label="Molecular weight",
|
207 |
+
min_value=0,
|
208 |
+
max_value=1000,
|
209 |
+
value=500,
|
210 |
+
step=10,
|
211 |
+
help="Look for compounds that have less or equal molecular weight than the value selected"
|
212 |
+
)
|
213 |
+
logp_cutoff = st.sidebar.slider(
|
214 |
+
label="LogP",
|
215 |
+
min_value=-10,
|
216 |
+
max_value=10,
|
217 |
+
value=5,
|
218 |
+
step=1,
|
219 |
+
help="Look for compounds that have less or equal logp than the value selected"
|
220 |
+
)
|
221 |
+
NumHDonors_cutoff = st.sidebar.slider(
|
222 |
+
label="NumHDonors",
|
223 |
+
min_value=0,
|
224 |
+
max_value=15,
|
225 |
+
value=5,
|
226 |
+
step=1,
|
227 |
+
help="Look for compounds that have less or equal donors weight than the value selected"
|
228 |
+
)
|
229 |
+
NumHAcceptors_cutoff = st.sidebar.slider(
|
230 |
+
label="NumHAcceptors",
|
231 |
+
min_value=0,
|
232 |
+
max_value=20,
|
233 |
+
value=10,
|
234 |
+
step=1,
|
235 |
+
help="Look for compounds that have less or equal acceptors weight than the value selected"
|
236 |
+
)
|
237 |
+
max_phase = st.sidebar.multiselect("Phase of the compound",
|
238 |
+
['1','2', '3', '4'],
|
239 |
+
help="""
|
240 |
+
- Phase 1 : Phase I of the compound in progress
|
241 |
+
- Phase 2 : Phase II of the compound in progress
|
242 |
+
- Phase 3 : Phase III of the compound in progress
|
243 |
+
- Phase 4 : Approved compound
|
244 |
+
"""
|
245 |
+
)
|
246 |
+
|
247 |
+
|
248 |
+
### Plot the input image
|
249 |
+
fig, ax = plt.subplots()
|
250 |
+
ax.imshow(imgdef,cmap="gray")
|
251 |
+
st.pyplot(fig=fig)
|
252 |
+
# Printing the possibility of having anomalies
|
253 |
+
st.markdown("<h3 style='text-align: center;'>Possibility of anomalies</h3>",unsafe_allow_html=True)
|
254 |
+
model = generatemodel(xrv.models.DenseNet,"densenet121-res224-mimic_ch") ### MIMIC MODEL+
|
255 |
+
model.eval()
|
256 |
+
pr = outputprob2(imgdef,model)
|
257 |
+
|
258 |
+
# Sort results by the descending probability order
|
259 |
+
pr = dict( sorted(pr.items(), key=operator.itemgetter(1),reverse=True))
|
260 |
+
# Select the treatment
|
261 |
+
option = st.sidebar.selectbox('Anomaly',list(pr.keys()),help='Select the illness or anomaly you want to treat')
|
262 |
+
col1,col2,col3 = st.columns((1,1,1))
|
263 |
+
cnt = 1
|
264 |
+
for (key,value) in pr.items():
|
265 |
+
if cnt%3==1:
|
266 |
+
col1.metric(label=key, value=str(cnt), delta=str(value))
|
267 |
+
if cnt%3==2:
|
268 |
+
col2.metric(label=key, value=str(cnt), delta=str(value))
|
269 |
+
if cnt%3==0:
|
270 |
+
col3.metric(label=key, value=str(cnt), delta=str(value))
|
271 |
+
cnt+=1
|
272 |
+
# temp = st.expander("Compunds to take care of {}".format(key))
|
273 |
+
#### Get the compounds for the anomaly selected
|
274 |
+
df = getdrugs(option,max_phase)
|
275 |
+
st.markdown("<h3 style='text-align: center;'>Compounds for {}</h3>".format(option),unsafe_allow_html=True)
|
276 |
+
### If exists the compounds
|
277 |
+
if df is not None:
|
278 |
|
279 |
+
#### Filter dataframe by controllers
|
280 |
+
df_result = df[df["mol_weight"] < weight_cutoff]
|
281 |
+
df_result2 = df_result[df_result["Logp"] < logp_cutoff]
|
282 |
+
df_result3 = df_result2[df_result2["Donnors"] < NumHDonors_cutoff]
|
283 |
+
df_result4 = df_result3[df_result3["Acceptors"] < NumHAcceptors_cutoff]
|
284 |
+
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
+
if len(df_result4)==0:
|
288 |
+
|
289 |
+
error(option)
|
290 |
+
else:
|
291 |
+
raw_html = mols2grid.display(df_result, mapping={"smiles": "SMILES","pref_name":"Name","Acceptors":"Acceptors","Donnors":"Donnors","Logp":"Logp","mol_weight":"mol_weight"},
|
292 |
+
subset=["img","Name"],tooltip=["Name","Acceptors","Donnors","Logp","mol_weight"],tooltip_placement="top",tooltip_trigger="click hover")._repr_html_()
|
293 |
+
|
294 |
+
components.html(raw_html, width=900, height=900, scrolling=True)
|
295 |
+
#### We do not find compounds for the anomaly
|
296 |
+
else:
|
297 |
+
error(option)
|
298 |
|