import spaces import gradio as gr import numpy as np import random import torch from PIL import Image from torchvision import transforms from diffusers import DiffusionPipeline # Constants dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Load FLUX model pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) pipe.enable_model_cpu_offload() pipe.vae.enable_slicing() pipe.vae.enable_tiling() def preprocess_image(image, image_size): preprocess = transforms.Compose([ transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]) ]) image = preprocess(image).unsqueeze(0).to(device, dtype=dtype) return image def check_shapes(latents): # Get the shape of the latents latent_shape = latents.shape print(f"Latent shape: {latent_shape}") # Get the expected shape for the transformer input expected_shape = (1, latent_shape[1] * latent_shape[2], latent_shape[3]) print(f"Expected transformer input shape: {expected_shape}") # Get the shape of the transformer's weight matrix if hasattr(pipe.transformer, 'text_model'): weight_shape = pipe.transformer.text_model.encoder.layers[0].self_attn.q_proj.weight.shape else: weight_shape = pipe.transformer.encoder.layers[0].self_attn.q_proj.weight.shape print(f"Transformer weight shape: {weight_shape}") # Check if the shapes are compatible for matrix multiplication if expected_shape[1] == weight_shape[1]: print("Shapes are compatible for matrix multiplication.") else: print("Warning: Shapes are not compatible for matrix multiplication.") print(f"Expected: {expected_shape[1]}, Got: {weight_shape[1]}") @spaces.GPU() def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) try: if init_image is None: # text2img case image = pipe( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] else: # img2img case init_image = init_image.convert("RGB") init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size # Encode the image using FLUX VAE latents = pipe.vae.encode(init_image).latent_dist.sample() * 0.18215 # Ensure latents are the correct shape latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear') # Check shapes before reshaping check_shapes(latents) # Reshape latents to match the expected input shape of the transformer latents = latents.permute(0, 2, 3, 1).contiguous().view(1, -1, pipe.vae.config.latent_channels) # Check shapes after reshaping check_shapes(latents) image = pipe( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0, latents=latents ).images[0] return image, seed except Exception as e: print(f"Error during inference: {e}") return Image.new("RGB", (width, height), (255, 0, 0)), seed # Red fallback image # Gradio interface setup with gr.Blocks() as demo: with gr.Row(): prompt = gr.Textbox(label="Prompt") init_image = gr.Image(label="Initial Image (optional)", type="pil") with gr.Row(): generate = gr.Button("Generate") with gr.Row(): result = gr.Image(label="Result") seed_output = gr.Number(label="Seed") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4) generate.click( infer, inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps], outputs=[result, seed_output] ) demo.launch()