import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" # Load the model in FP16 pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16) # Move the pipeline to GPU if available pipe = pipe.to(device) # Convert text encoders to full precision pipe.text_encoder = pipe.text_encoder.to(torch.float32) if hasattr(pipe, 'text_encoder_2'): pipe.text_encoder_2 = pipe.text_encoder_2.to(torch.float32) # Enable memory efficient attention if available and on CUDA if device == "cuda" and hasattr(pipe, 'enable_xformers_memory_efficient_attention'): try: pipe.enable_xformers_memory_efficient_attention() print("xformers memory efficient attention enabled") except Exception as e: print(f"Could not enable memory efficient attention: {e}") # Compile the UNet for potential speedups if on CUDA if device == "cuda": try: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) print("UNet compiled for potential speedups") except Exception as e: print(f"Could not compile UNet: {e}") MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) # Use full precision for text encoding with torch.no_grad(): text_inputs = pipe.tokenizer(prompt, return_tensors="pt").to(device) text_embeddings = pipe.text_encoder(text_inputs.input_ids)[0] # Use mixed precision for the rest of the pipeline with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): image = pipe( prompt_embeds=text_embeddings, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] return image, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [schnell] 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], outputs = [result, seed] ) demo.launch()