import gradio as gr import numpy as np import random import spaces import torch from PIL import Image from torchvision import transforms from diffusers import DiffusionPipeline # Define constants MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 MIN_IMAGE_SIZE = 256 DEFAULT_IMAGE_SIZE = 1024 MAX_PROMPT_LENGTH = 500 # Check for GPU availability device = "cuda" if torch.cuda.is_available() else "cpu" if device == "cpu": print("Warning: Running on CPU. This may be very slow.") dtype = torch.float16 if device == "cuda" else torch.float32 def load_model(): try: return DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) except Exception as e: raise RuntimeError(f"Failed to load the model: {str(e)}") # Load the diffusion pipeline pipe = load_model() def preprocess_image(image, target_size=(512, 512)): # Preprocess the image for the VAE preprocess = transforms.Compose([ transforms.Resize(target_size, interpolation=transforms.InterpolationMode.LANCZOS), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]) ]) image = preprocess(image).unsqueeze(0).to(device, dtype=dtype) return image def encode_image(image, vae): # Encode the image using the VAE with torch.no_grad(): latents = vae.encode(image).latent_dist.sample() * 0.18215 return latents def validate_inputs(prompt, width, height, num_inference_steps): if not prompt or len(prompt) > MAX_PROMPT_LENGTH: raise ValueError(f"Prompt must be between 1 and {MAX_PROMPT_LENGTH} characters.") if width % 8 != 0 or height % 8 != 0: raise ValueError("Width and height must be divisible by 8.") if width < MIN_IMAGE_SIZE or width > MAX_IMAGE_SIZE or height < MIN_IMAGE_SIZE or height > MAX_IMAGE_SIZE: raise ValueError(f"Image dimensions must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}.") if num_inference_steps < 1 or num_inference_steps > 50: raise ValueError("Number of inference steps must be between 1 and 50.") @spaces.GPU() def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_IMAGE_SIZE, height=DEFAULT_IMAGE_SIZE, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): try: validate_inputs(prompt, width, height, num_inference_steps) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) if init_image is not None: init_image = init_image.convert("RGB") init_image = preprocess_image(init_image, (height, width)) latents = encode_image(init_image, pipe.vae) latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear') image = pipe( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0, latents=latents ).images[0] else: image = pipe( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] return image, seed except Exception as e: raise gr.Error(str(e)) # Define example prompts examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", "a surreal landscape with floating islands and waterfalls", "a steampunk-inspired cityscape at sunset" ] # CSS styling for the Japanese-inspired interface css = """ body { background-color: #fff; font-family: 'Noto Sans JP', sans-serif; color: #333; } #col-container { margin: 0 auto; max-width: 520px; border: 2px solid #000; padding: 20px; background-color: #f7f7f7; border-radius: 10px; } .gr-button { background-color: #e60012; color: #fff; border: 2px solid #000; } .gr-button:hover { background-color: #c20010; } .gr-slider, .gr-checkbox, .gr-textbox { border: 2px solid #000; } .gr-accordion { border: 2px solid #000; background-color: #fff; } .gr-image { border: 2px solid #000; } """ # Create the Gradio interface with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(""" # FLUX.1 [schnell] 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] """) with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder=f"Enter your prompt (max {MAX_PROMPT_LENGTH} characters)", container=False, ) run_button = gr.Button("Run", scale=0) with gr.Row(): init_image = gr.Image(label="Initial Image (optional)", type="pil") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=DEFAULT_IMAGE_SIZE, ) height = gr.Slider( label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=DEFAULT_IMAGE_SIZE, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps], outputs=[result, seed] ) if __name__ == "__main__": demo.launch()