Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
bf5cb46
1
Parent(s):
3ae9c83
trying to fix mat1 and mat2
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
12 |
MAX_IMAGE_SIZE = 2048
|
13 |
MIN_IMAGE_SIZE = 256
|
14 |
DEFAULT_IMAGE_SIZE = 1024
|
15 |
-
MAX_PROMPT_LENGTH =
|
16 |
|
17 |
# Check for GPU availability
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -23,7 +23,10 @@ dtype = torch.float16 if device == "cuda" else torch.float32
|
|
23 |
|
24 |
def load_model():
|
25 |
try:
|
26 |
-
|
|
|
|
|
|
|
27 |
except Exception as e:
|
28 |
raise RuntimeError(f"Failed to load the model: {str(e)}")
|
29 |
|
@@ -65,19 +68,23 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_
|
|
65 |
seed = random.randint(0, MAX_SEED)
|
66 |
generator = torch.Generator(device=device).manual_seed(seed)
|
67 |
|
|
|
|
|
|
|
68 |
if init_image is not None:
|
69 |
init_image = init_image.convert("RGB")
|
70 |
init_image = preprocess_image(init_image, (height, width))
|
71 |
latents = encode_image(init_image, pipe.vae)
|
72 |
-
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
|
73 |
image = pipe(
|
74 |
prompt=prompt,
|
|
|
75 |
height=height,
|
76 |
width=width,
|
77 |
num_inference_steps=num_inference_steps,
|
78 |
generator=generator,
|
79 |
guidance_scale=0.0,
|
80 |
-
|
81 |
).images[0]
|
82 |
else:
|
83 |
image = pipe(
|
@@ -86,7 +93,8 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_
|
|
86 |
width=width,
|
87 |
num_inference_steps=num_inference_steps,
|
88 |
generator=generator,
|
89 |
-
guidance_scale=0.0
|
|
|
90 |
).images[0]
|
91 |
|
92 |
return image, seed
|
|
|
12 |
MAX_IMAGE_SIZE = 2048
|
13 |
MIN_IMAGE_SIZE = 256
|
14 |
DEFAULT_IMAGE_SIZE = 1024
|
15 |
+
MAX_PROMPT_LENGTH = 256 # Changed to 256 as per FLUX.1 schnell requirements
|
16 |
|
17 |
# Check for GPU availability
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
23 |
|
24 |
def load_model():
|
25 |
try:
|
26 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
27 |
+
pipe.enable_model_cpu_offload()
|
28 |
+
pipe.enable_attention_slicing()
|
29 |
+
return pipe
|
30 |
except Exception as e:
|
31 |
raise RuntimeError(f"Failed to load the model: {str(e)}")
|
32 |
|
|
|
68 |
seed = random.randint(0, MAX_SEED)
|
69 |
generator = torch.Generator(device=device).manual_seed(seed)
|
70 |
|
71 |
+
# Ensure max_sequence_length is not more than 256
|
72 |
+
max_sequence_length = min(MAX_PROMPT_LENGTH, len(prompt))
|
73 |
+
|
74 |
if init_image is not None:
|
75 |
init_image = init_image.convert("RGB")
|
76 |
init_image = preprocess_image(init_image, (height, width))
|
77 |
latents = encode_image(init_image, pipe.vae)
|
78 |
+
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear', align_corners=False)
|
79 |
image = pipe(
|
80 |
prompt=prompt,
|
81 |
+
image=latents, # Changed from latents=latents to image=latents
|
82 |
height=height,
|
83 |
width=width,
|
84 |
num_inference_steps=num_inference_steps,
|
85 |
generator=generator,
|
86 |
guidance_scale=0.0,
|
87 |
+
max_sequence_length=max_sequence_length
|
88 |
).images[0]
|
89 |
else:
|
90 |
image = pipe(
|
|
|
93 |
width=width,
|
94 |
num_inference_steps=num_inference_steps,
|
95 |
generator=generator,
|
96 |
+
guidance_scale=0.0,
|
97 |
+
max_sequence_length=max_sequence_length
|
98 |
).images[0]
|
99 |
|
100 |
return image, seed
|