Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
3be64a5
1
Parent(s):
383a90d
target the text encoder, merge latent space before the pipeline
Browse files
app.py
CHANGED
|
@@ -14,7 +14,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 14 |
MAX_SEED = np.iinfo(np.int32).max
|
| 15 |
MAX_IMAGE_SIZE = 2048
|
| 16 |
LATENT_CHANNELS = 16
|
| 17 |
-
|
|
|
|
| 18 |
SCALING_FACTOR = 0.3611
|
| 19 |
|
| 20 |
# Load FLUX model
|
|
@@ -23,8 +24,8 @@ pipe.enable_model_cpu_offload()
|
|
| 23 |
pipe.vae.enable_slicing()
|
| 24 |
pipe.vae.enable_tiling()
|
| 25 |
|
| 26 |
-
# Add a projection layer to match
|
| 27 |
-
projection = nn.Linear(LATENT_CHANNELS,
|
| 28 |
|
| 29 |
def preprocess_image(image, image_size):
|
| 30 |
preprocess = transforms.Compose([
|
|
@@ -47,10 +48,19 @@ def process_latents(latents, height, width):
|
|
| 47 |
latents = latents.permute(0, 2, 3, 1).reshape(1, -1, LATENT_CHANNELS)
|
| 48 |
print(f"Reshaped latent shape: {latents.shape}")
|
| 49 |
|
| 50 |
-
# Project latents
|
| 51 |
latents = projection(latents)
|
| 52 |
print(f"Projected latent shape: {latents.shape}")
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
return latents
|
| 55 |
|
| 56 |
@spaces.GPU()
|
|
@@ -79,11 +89,16 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 79 |
latents = pipe.vae.encode(init_image).latent_dist.sample() * SCALING_FACTOR
|
| 80 |
print(f"Initial latent shape from VAE: {latents.shape}")
|
| 81 |
|
| 82 |
-
# Process latents to match
|
| 83 |
latents = process_latents(latents, height, width)
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
image = pipe(
|
| 89 |
prompt=prompt,
|
|
@@ -92,7 +107,7 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 92 |
num_inference_steps=num_inference_steps,
|
| 93 |
generator=generator,
|
| 94 |
guidance_scale=0.0,
|
| 95 |
-
latents=
|
| 96 |
).images[0]
|
| 97 |
|
| 98 |
return image, seed
|
|
|
|
| 14 |
MAX_SEED = np.iinfo(np.int32).max
|
| 15 |
MAX_IMAGE_SIZE = 2048
|
| 16 |
LATENT_CHANNELS = 16
|
| 17 |
+
TEXT_EMBED_DIM = 768
|
| 18 |
+
MAX_TEXT_EMBEDDINGS = 77
|
| 19 |
SCALING_FACTOR = 0.3611
|
| 20 |
|
| 21 |
# Load FLUX model
|
|
|
|
| 24 |
pipe.vae.enable_slicing()
|
| 25 |
pipe.vae.enable_tiling()
|
| 26 |
|
| 27 |
+
# Add a projection layer to match text embedding dimension
|
| 28 |
+
projection = nn.Linear(LATENT_CHANNELS, TEXT_EMBED_DIM).to(device).to(dtype)
|
| 29 |
|
| 30 |
def preprocess_image(image, image_size):
|
| 31 |
preprocess = transforms.Compose([
|
|
|
|
| 48 |
latents = latents.permute(0, 2, 3, 1).reshape(1, -1, LATENT_CHANNELS)
|
| 49 |
print(f"Reshaped latent shape: {latents.shape}")
|
| 50 |
|
| 51 |
+
# Project latents to match text embedding dimension
|
| 52 |
latents = projection(latents)
|
| 53 |
print(f"Projected latent shape: {latents.shape}")
|
| 54 |
|
| 55 |
+
# Adjust sequence length to match text embeddings
|
| 56 |
+
seq_len = latents.shape[1]
|
| 57 |
+
if seq_len > MAX_TEXT_EMBEDDINGS:
|
| 58 |
+
latents = latents[:, :MAX_TEXT_EMBEDDINGS, :]
|
| 59 |
+
elif seq_len < MAX_TEXT_EMBEDDINGS:
|
| 60 |
+
pad_len = MAX_TEXT_EMBEDDINGS - seq_len
|
| 61 |
+
latents = torch.nn.functional.pad(latents, (0, 0, 0, pad_len, 0, 0))
|
| 62 |
+
print(f"Final latent shape: {latents.shape}")
|
| 63 |
+
|
| 64 |
return latents
|
| 65 |
|
| 66 |
@spaces.GPU()
|
|
|
|
| 89 |
latents = pipe.vae.encode(init_image).latent_dist.sample() * SCALING_FACTOR
|
| 90 |
print(f"Initial latent shape from VAE: {latents.shape}")
|
| 91 |
|
| 92 |
+
# Process latents to match text embedding format
|
| 93 |
latents = process_latents(latents, height, width)
|
| 94 |
|
| 95 |
+
# Get text embeddings
|
| 96 |
+
text_embeddings = pipe.transformer.text_encoder([prompt])
|
| 97 |
+
print(f"Text embedding shape: {text_embeddings.shape}")
|
| 98 |
+
|
| 99 |
+
# Combine image latents and text embeddings
|
| 100 |
+
combined_embeddings = torch.cat([latents, text_embeddings], dim=1)
|
| 101 |
+
print(f"Combined embedding shape: {combined_embeddings.shape}")
|
| 102 |
|
| 103 |
image = pipe(
|
| 104 |
prompt=prompt,
|
|
|
|
| 107 |
num_inference_steps=num_inference_steps,
|
| 108 |
generator=generator,
|
| 109 |
guidance_scale=0.0,
|
| 110 |
+
latents=combined_embeddings
|
| 111 |
).images[0]
|
| 112 |
|
| 113 |
return image, seed
|