Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
12f1d71
1
Parent(s):
6cbacd9
mapped projection
Browse files
app.py
CHANGED
@@ -13,6 +13,9 @@ dtype = torch.bfloat16
|
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
|
|
|
|
|
|
16 |
|
17 |
# Load FLUX model
|
18 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
@@ -20,8 +23,8 @@ pipe.enable_model_cpu_offload()
|
|
20 |
pipe.vae.enable_slicing()
|
21 |
pipe.vae.enable_tiling()
|
22 |
|
23 |
-
# Add a projection layer to match
|
24 |
-
projection = nn.Linear(
|
25 |
|
26 |
def preprocess_image(image, image_size):
|
27 |
preprocess = transforms.Compose([
|
@@ -41,7 +44,7 @@ def process_latents(latents, height, width):
|
|
41 |
print(f"Latent shape after potential interpolation: {latents.shape}")
|
42 |
|
43 |
# Reshape latents to [batch_size, seq_len, channels]
|
44 |
-
latents = latents.permute(0, 2, 3, 1).reshape(1, -1,
|
45 |
print(f"Reshaped latent shape: {latents.shape}")
|
46 |
|
47 |
# Project latents from 16 to 64 dimensions
|
@@ -73,10 +76,10 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
73 |
init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size
|
74 |
|
75 |
# Encode the image using FLUX VAE
|
76 |
-
latents = pipe.vae.encode(init_image).latent_dist.sample() *
|
77 |
print(f"Initial latent shape from VAE: {latents.shape}")
|
78 |
|
79 |
-
# Process latents to match
|
80 |
latents = process_latents(latents, height, width)
|
81 |
|
82 |
print(f"x_embedder weight shape: {pipe.transformer.x_embedder.weight.shape}")
|
|
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
16 |
+
LATENT_CHANNELS = 16
|
17 |
+
TRANSFORMER_IN_CHANNELS = 64
|
18 |
+
SCALING_FACTOR = 0.3611
|
19 |
|
20 |
# Load FLUX model
|
21 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
|
|
23 |
pipe.vae.enable_slicing()
|
24 |
pipe.vae.enable_tiling()
|
25 |
|
26 |
+
# Add a projection layer to match transformer input
|
27 |
+
projection = nn.Linear(LATENT_CHANNELS, TRANSFORMER_IN_CHANNELS).to(device).to(dtype)
|
28 |
|
29 |
def preprocess_image(image, image_size):
|
30 |
preprocess = transforms.Compose([
|
|
|
44 |
print(f"Latent shape after potential interpolation: {latents.shape}")
|
45 |
|
46 |
# Reshape latents to [batch_size, seq_len, channels]
|
47 |
+
latents = latents.permute(0, 2, 3, 1).reshape(1, -1, LATENT_CHANNELS)
|
48 |
print(f"Reshaped latent shape: {latents.shape}")
|
49 |
|
50 |
# Project latents from 16 to 64 dimensions
|
|
|
76 |
init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size
|
77 |
|
78 |
# Encode the image using FLUX VAE
|
79 |
+
latents = pipe.vae.encode(init_image).latent_dist.sample() * SCALING_FACTOR
|
80 |
print(f"Initial latent shape from VAE: {latents.shape}")
|
81 |
|
82 |
+
# Process latents to match transformer input
|
83 |
latents = process_latents(latents, height, width)
|
84 |
|
85 |
print(f"x_embedder weight shape: {pipe.transformer.x_embedder.weight.shape}")
|