flux-lightning / app.py
Jordan Legg
main push
f071803
raw
history blame
8.09 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline
# Define constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
MIN_IMAGE_SIZE = 256
DEFAULT_IMAGE_SIZE = 1024
MAX_PROMPT_LENGTH = 256 # Changed to 256 as per FLUX.1-schnell requirements
# Check for GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
print("Warning: Running on CPU. This may be very slow.")
dtype = torch.float16 if device == "cuda" else torch.float32
def load_model():
try:
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
pipe.to(device)
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
return pipe
except Exception as e:
raise RuntimeError(f"Failed to load the model: {str(e)}")
# Load the diffusion pipeline
pipe = load_model()
def preprocess_image(image, target_size):
# Preprocess the image for the VAE
preprocess = transforms.Compose([
transforms.Resize(target_size, interpolation=transforms.InterpolationMode.LANCZOS),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
return image
def encode_image(image, vae):
# Encode the image using the VAE
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
return latents
def validate_inputs(prompt, width, height, num_inference_steps):
if not prompt or len(prompt) > MAX_PROMPT_LENGTH:
raise ValueError(f"Prompt must be between 1 and {MAX_PROMPT_LENGTH} characters.")
if width % 8 != 0 or height % 8 != 0:
raise ValueError("Width and height must be divisible by 8.")
if width < MIN_IMAGE_SIZE or width > MAX_IMAGE_SIZE or height < MIN_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
raise ValueError(f"Image dimensions must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}.")
if num_inference_steps < 1 or num_inference_steps > 50:
raise ValueError("Number of inference steps must be between 1 and 50.")
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_IMAGE_SIZE, height=DEFAULT_IMAGE_SIZE, num_inference_steps=4, strength=0.8, progress=gr.Progress(track_tqdm=True)):
try:
validate_inputs(prompt, width, height, num_inference_steps)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Ensure max_sequence_length is not more than 256
max_sequence_length = min(MAX_PROMPT_LENGTH, len(prompt))
if init_image is not None:
# Process img2img
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, (height, width))
# Encode the image using the VAE
init_latents = encode_image(init_image, pipe.vae)
# Ensure latents are correctly shaped
init_latents = torch.nn.functional.interpolate(init_latents, size=(height // 8, width // 8), mode='bilinear', align_corners=False)
# Add noise to latents
noise = torch.randn_like(init_latents)
latents = noise + strength * (init_latents - noise)
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents,
max_sequence_length=max_sequence_length
).images[0]
else:
# Process text2img
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
max_sequence_length=max_sequence_length
).images[0]
return image, seed
except Exception as e:
raise gr.Error(str(e))
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
"a surreal landscape with floating islands and waterfalls",
"a steampunk-inspired cityscape at sunset"
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder=f"Enter your prompt (max {MAX_PROMPT_LENGTH} characters)",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=DEFAULT_IMAGE_SIZE,
)
height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=DEFAULT_IMAGE_SIZE,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
strength = gr.Slider(
label="Strength (for img2img)",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps, strength],
outputs=[result, seed]
)
if __name__ == "__main__":
demo.launch()