Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from PIL import Image | |
from torchvision import transforms | |
from diffusers import DiffusionPipeline, AutoencoderKL | |
# Constants | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# Load models | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
pipe.enable_model_cpu_offload() | |
pipe.vae.enable_slicing() | |
pipe.vae.enable_tiling() | |
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae").to(device) | |
def preprocess_image(image, image_size): | |
preprocess = transforms.Compose([ | |
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) | |
]) | |
image = preprocess(image).unsqueeze(0).to(device, dtype=torch.float32) | |
return image | |
def encode_image(image): | |
with torch.no_grad(): | |
latents = vae.encode(image).latent_dist.sample() * 0.18215 | |
return latents | |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
try: | |
if init_image is None: | |
# text2img case | |
image = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0 | |
).images[0] | |
else: | |
# img2img case | |
init_image = init_image.convert("RGB") | |
init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size | |
latents = encode_image(init_image) | |
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear') | |
if latents.shape[1] != pipe.vae.config.latent_channels: | |
conv = torch.nn.Conv2d(latents.shape[1], pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=dtype) | |
latents = conv(latents.to(dtype)) | |
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels) | |
image = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0, | |
latents=latents | |
).images[0] | |
return image, seed | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
return Image.new("RGB", (width, height), (255, 0, 0)), seed # Red fallback image | |
# Gradio interface setup | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt") | |
init_image = gr.Image(label="Initial Image (optional)", type="pil") | |
with gr.Row(): | |
generate = gr.Button("Generate") | |
with gr.Row(): | |
result = gr.Image(label="Result") | |
seed_output = gr.Number(label="Seed") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4) | |
generate.click( | |
infer, | |
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[result, seed_output] | |
) | |
demo.launch() |