flux-lightning / app.py
Jordan Legg
handling
cec333d
raw
history blame
6.83 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline
# Define constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load the diffusion pipeline with optimizations
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.to(device)
def preprocess_image(image, image_size):
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
return image
def encode_image(image, vae):
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
return latents
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
fallback_image = Image.new("RGB", (width, height), (255, 0, 0)) # Red image as a fallback
if init_image is None:
try:
result = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
max_sequence_length=256
)
image = result.images[0]
return image, seed
except Exception as e:
print(f"Pipeline call failed with error: {e}")
return fallback_image, seed
else:
vae_image_size = pipe.vae.config.sample_size # Ensure this is correct
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, vae_image_size)
latents = encode_image(init_image, pipe.vae)
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
latent_channels = pipe.vae.config.latent_channels # Ensure this is correct
if latent_channels != 64:
conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
latents = conv(latents)
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64)
try:
if 'timesteps' in pipe.transformer.forward.__code__.co_varnames:
timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
_ = pipe.transformer(latents, timesteps=timestep)
else:
_ = pipe.transformer(latents)
except Exception as e:
print(f"Transformer call failed with error: {e}. Skipping transformer step.")
return fallback_image, seed
try:
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
).images[0]
except Exception as e:
print(f"Pipeline call with latents failed with error: {e}")
return fallback_image, seed
return image, seed
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch()