flux-lightning / app.py
Jordan Legg
added console logging
b54a3db
raw
history blame
7.25 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline
# Define constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load the diffusion pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
def preprocess_image(image, image_size):
print(f"Preprocessing image to size: {image_size}x{image_size}")
# Preprocess the image for the VAE
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size)), # Use model-specific size
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]) # Ensure this matches the VAE's training normalization
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
print(f"Image shape after preprocessing: {image.shape}")
return image
def encode_image(image, vae):
print("Encoding image using the VAE")
# Encode the image using the VAE
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
print(f"Latents shape after encoding: {latents.shape}")
return latents
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
print(f"Inference started with prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
print(f"Using seed: {seed}")
generator = torch.Generator().manual_seed(seed)
# Get the expected image size for the VAE
vae_image_size = pipe.vae.config.sample_size
print(f"Expected VAE image size: {vae_image_size}")
if init_image is not None:
print("Initial image provided, processing img2img")
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, vae_image_size)
latents = encode_image(init_image, pipe.vae)
# Interpolating latents
print(f"Interpolating latents to size: {(height // 8, width // 8)}")
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
print(f"Latents shape after interpolation: {latents.shape}")
# Convert latent channels to 64 as expected by the transformer
latent_channels = pipe.vae.config.latent_channels
print(f"Expected latent channels: 64, current latent channels: {latent_channels}")
if latent_channels != 64:
print(f"Converting latent channels from {latent_channels} to 64")
conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
latents = conv(latents)
print(f"Latents shape after channel conversion: {latents.shape}")
# Reshape latents to match the transformer's input expectations
latents = latents.view(1, 64, height // 8, width // 8)
print(f"Latents shape after reshaping: {latents.shape}")
# Flatten the latents if required by the transformer
latents = latents.flatten(start_dim=1)
print(f"Latents shape after flattening: {latents.shape}")
print("Calling the diffusion pipeline with latents")
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
).images[0]
else:
print("No initial image provided, processing text2img")
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
print("Inference complete")
return image, seed
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch()