flux-lightning / app.py
Jordan Legg
check latent chapes before multiplication
a7d057d
raw
history blame
3.95 kB
import spaces
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline
# Constants
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load FLUX model
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
def preprocess_image(image, image_size):
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
return image
def check_shapes(latents):
# Get the shape of the latents
latent_shape = latents.shape
print(f"Latent shape: {latent_shape}")
# Get the expected shape for the transformer input
expected_shape = (1, latent_shape[1] * latent_shape[2], latent_shape[3])
print(f"Expected transformer input shape: {expected_shape}")
# Get the shape of the transformer's weight matrix
if hasattr(pipe.transformer, 'text_model'):
weight_shape = pipe.transformer.text_model.encoder.layers[0].self_attn.q_proj.weight.shape
else:
weight_shape = pipe.transformer.encoder.layers[0].self_attn.q_proj.weight.shape
print(f"Transformer weight shape: {weight_shape}")
# Check if the shapes are compatible for matrix multiplication
if expected_shape[1] == weight_shape[1]:
print("Shapes are compatible for matrix multiplication.")
else:
print("Warning: Shapes are not compatible for matrix multiplication.")
print(f"Expected: {expected_shape[1]}, Got: {weight_shape[1]}")
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
if init_image is None:
# text2img case
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
else:
# img2img case
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size
# Encode the image using FLUX VAE
latents = pipe.vae.encode(init_image).latent_dist.sample() * 0.18215
# Ensure latents are the correct shape
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
# Check shapes before reshaping
check_shapes(latents)
# Reshape latents to match the expected input shape of the transformer
latents = latents.permute(0, 2, 3, 1).contiguous().view(1, -1, pipe.vae.config.latent_channels)
# Check shapes after reshaping
check_shapes(latents)
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
).images[0]
return image, seed
except Exception as e:
print(f"Error during inference: {e}")
return Image.new("RGB", (width, height), (255, 0, 0)), seed # Red fallback image
demo.launch()