flux-lightning / app.py
Jordan Legg
turn off xformers for cpu
6f5f495
raw
history blame
4.88 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model in FP16
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16)
# Move the pipeline to GPU if available
pipe = pipe.to(device)
# Convert text encoders to full precision
pipe.text_encoder = pipe.text_encoder.to(torch.float32)
if hasattr(pipe, 'text_encoder_2'):
pipe.text_encoder_2 = pipe.text_encoder_2.to(torch.float32)
# Enable memory efficient attention if available and on CUDA
if device == "cuda" and hasattr(pipe, 'enable_xformers_memory_efficient_attention'):
try:
pipe.enable_xformers_memory_efficient_attention()
print("xformers memory efficient attention enabled")
except Exception as e:
print(f"Could not enable memory efficient attention: {e}")
# Compile the UNet for potential speedups if on CUDA
if device == "cuda":
try:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
print("UNet compiled for potential speedups")
except Exception as e:
print(f"Could not compile UNet: {e}")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Use full precision for text encoding
with torch.no_grad():
text_inputs = pipe.tokenizer(prompt, return_tensors="pt").to(device)
text_embeddings = pipe.text_encoder(text_inputs.input_ids)[0]
# Use mixed precision for the rest of the pipeline
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
image = pipe(
prompt_embeds=text_embeddings,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
demo.launch()