Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the model in FP16 | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16) | |
# Move the pipeline to GPU if available | |
pipe = pipe.to(device) | |
# Convert text encoders to full precision | |
pipe.text_encoder = pipe.text_encoder.to(torch.float32) | |
if hasattr(pipe, 'text_encoder_2'): | |
pipe.text_encoder_2 = pipe.text_encoder_2.to(torch.float32) | |
# Enable memory efficient attention if available and on CUDA | |
if device == "cuda" and hasattr(pipe, 'enable_xformers_memory_efficient_attention'): | |
try: | |
pipe.enable_xformers_memory_efficient_attention() | |
print("xformers memory efficient attention enabled") | |
except Exception as e: | |
print(f"Could not enable memory efficient attention: {e}") | |
# Compile the UNet for potential speedups if on CUDA | |
if device == "cuda": | |
try: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
print("UNet compiled for potential speedups") | |
except Exception as e: | |
print(f"Could not compile UNet: {e}") | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# Use full precision for text encoding | |
with torch.no_grad(): | |
text_inputs = pipe.tokenizer(prompt, return_tensors="pt").to(device) | |
text_embeddings = pipe.text_encoder(text_inputs.input_ids)[0] | |
# Use mixed precision for the rest of the pipeline | |
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): | |
image = pipe( | |
prompt_embeds=text_embeddings, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0 | |
).images[0] | |
return image, seed | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [schnell] | |
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation | |
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples = examples, | |
fn = infer, | |
inputs = [prompt], | |
outputs = [result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.launch() |