flux-lightning / app.py
Jordan Legg
model compatibility
6af450a
raw
history blame
7.64 kB
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline, AutoencoderKL
import spaces
# Define constants
flux_dtype = torch.bfloat16
vae_dtype = torch.float32
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def load_models():
# Load the initial VAE model for preprocessing in float32
vae_model_name = "runwayml/stable-diffusion-v1-5"
vae = AutoencoderKL.from_pretrained(vae_model_name, subfolder="vae").to(device).to(vae_dtype)
# Load the FLUX diffusion pipeline with bfloat16
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=flux_dtype)
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.to(device)
return vae, pipe
vae, pipe = load_models()
def preprocess_image(image, image_size):
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image = preprocess(image).unsqueeze(0).to(device, dtype=vae_dtype)
print("Image processed successfully.")
return image
def encode_image(image, vae):
try:
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
print("Image encoded successfully.")
return latents
except RuntimeError as e:
print(f"Error during image encoding: {e}")
raise
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
fallback_image = Image.new("RGB", (width, height), (255, 0, 0)) # Red image as a fallback
try:
if init_image is None:
# text2img case
result = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
max_sequence_length=256
)
else:
# img2img case
print("Initial image provided, starting preprocessing...")
vae_image_size = 1024 # Using FLUX VAE sample size for preprocessing
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, vae_image_size)
print("Starting encoding of the image...")
latents = encode_image(init_image, vae)
print(f"Latents shape after encoding: {latents.shape}")
# Ensure the latents size matches the expected input size for the FLUX model
print("Interpolating latents to match model's input size...")
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
latent_channels = latents.shape[1]
print(f"Latent channels from VAE: {latent_channels}, expected by FLUX model: {pipe.vae.config.latent_channels}")
if latent_channels != pipe.vae.config.latent_channels:
print(f"Adjusting latent channels from {latent_channels} to {pipe.vae.config.latent_channels}")
conv = torch.nn.Conv2d(latent_channels, pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=flux_dtype)
latents = conv(latents.to(flux_dtype))
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
print(f"Latents shape after permutation: {latents.shape}")
result = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
)
image = result.images[0]
return image, seed
except Exception as e:
print(f"Error during inference: {e}")
return fallback_image, seed
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
run_button.click(
infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch()