flux-lightning / app.py
Jordan Legg
removed img2img :(
1c4aefd
raw
history blame
1.92 kB
import spaces
import gradio as gr
import torch
from diffusers import DiffusionPipeline
# Constants
MAX_SEED = 2**32 - 1
MAX_IMAGE_SIZE = 2048
# Load FLUX model
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
@spaces.GPU()
def generate_image(prompt, seed, width, height, num_inference_steps):
generator = torch.Generator(device="cuda").manual_seed(seed)
try:
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
return image, seed
except Exception as e:
print(f"Error during image generation: {e}")
import traceback
traceback.print_exc()
return None, seed
# Gradio interface
with gr.Blocks() as demo:
with gr.Row():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
generate = gr.Button("Generate")
with gr.Row():
result = gr.Image(label="Generated Image")
seed_output = gr.Number(label="Seed Used")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, randomize=True)
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4)
generate.click(
generate_image,
inputs=[prompt, seed, width, height, num_inference_steps],
outputs=[result, seed_output]
)
demo.launch()