from langchain.prompts import PromptTemplate from langchain import HuggingFaceHub from langchain.chains import LLMChain from langchain.memory import ConversationBufferMemory from redis.commands.search.query import Query import time import os from dotenv import load_dotenv import numpy as np load_dotenv() HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') repo_id = 'tiiuae/falcon-7b-instruct' falcon_llm_1 = HuggingFaceHub(repo_id = repo_id, model_kwargs={'temperature':0.1,'max_new_tokens':500},huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN) prompt = PromptTemplate( input_variables=["product_description"], template="Create comma seperated product keywords to perform a query on a amazon dataset for this user input: {product_description}", ) chain = LLMChain(llm=falcon_llm_1, prompt=prompt) # code The response repo_id_2 = 'tiiuae/falcon-7b' template = """You are a salesman. Be kind, detailed and nice. take the given context and Present the given queried search result in a nice way as answer to the user_msg. dont ask questions back or freestyle and invent followup conversation! just {chat_history} {user_msg} Chatbot:""" prompt = PromptTemplate( input_variables=["chat_history", "user_msg"], template=template ) memory = ConversationBufferMemory(memory_key="chat_history") llm_chain = LLMChain( llm = HuggingFaceHub(repo_id = repo_id_2, model_kwargs={'temperature':0.8,'max_new_tokens':500}), prompt=prompt, verbose=False, memory=memory, )