Spaces:
Running
Running
File size: 3,220 Bytes
6f8d992 240da15 6f8d992 717fb23 fbcf00e e1a334f 717fb23 dc78502 717fb23 c79625a 717fb23 23dae9f 717fb23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
title: EcomShoppingBuddy
emoji: πβ
colorFrom: pink
colorTo: red
sdk: streamlit
sdk_version: 1.27.2
app_file: app.py
pinned: false
---
# Shopping Buddy
## Overview:
This project leverages [Falcon LLM](https://falconllm.tii.ae/), [OpenAI](openai.com) API, [Sentence Transformer](https://www.sbert.net/docs/installation.html#install-sentencetransformers), [Hugging Face Hub](https://huggingface.co/) and [Streamlit](https://docs.streamlit.io/) to build and deploy a chatbot shopping assistant application. It relies on a dataset of Amazon products to provide tailored product recommendations aligned with user's needs. The application uses [Langchain](https://www.langchain.com/) to integrate those diverse functionalities. Data preprocessing, embedding generation, and storage in Redis are also essential components of this project.
More details about the project are provided in [this blog post](https://medium.com/@roumamedj/shopping-buddy-767458f752f9).
You can test the application by visiting [Shopping Buddy](https://huggingface.co/spaces/RomyMy/EcomShoppingBuddy).
## Table of Contents
- [Shopping Buddy](#shopping-buddy)
* [Overview](#overview)
* [Installation & Setup](#installation--setup)
+ [1. Clone the Repository](#1-clone-the-repository)
+ [2. Install Dependencies](#2-install-dependencies)
+ [3. Environment Variables](#3-environment-variables)
+ [4. Data Preprocessing](#4-data-preprocessing)
* [Running the Application](#running-the-application)
* [Contributing](#contributing)
## Installation & Setup
### 1. Clone the Repository
```bash
git clone [email protected]:romaissaMe/shopping-buddy.git
cd shopping-buddy
```
### 2. Install Dependencies
```bash
pip install -r requirements.txt
```
### 3. Environment Variables
Set up your environment variables. This project uses the `dotenv` library to manage environment variables. Create a `.env` file in the root directory:
```bash
cp .env_example .env
```
and add the following variables:
```bash
HUGGINGFACEHUB_API_TOKEN=your_huggingface_api_token
OPENAI_API_KEY=your_openai_api_key
REDIS_HOST=your_redis_host
REDIS_PORT=your_redis_port
REDIS_KEY=your_redis_key
```
### 4. Data Preprocessing
Before running the main application, preprocess and import your data into a database using:
```bash
python preprocess.py
```
Download the data as csv file from [here](https://drive.google.com/file/d/1tHWB6u3yQCuAgOYc-DxtZ8Mru3uV5_lj/view) and name it 'product_data.csv'.
This dataset comprises Amazon products information including item ID, item name, item keywords, product type...
## Running the Application
Once the setup is complete, you can run the main application using:
```bash
streamlit run app.py
```
This will launch the Streamlit application, and you can access the chatbot via the provided URL.
<img
src="./ShoppingBudddy.png"
style="display: inline-block;margin: 0 auto ; max-width:400px">
## Contributing
If you're looking to contribute to this project, kindly follow the standard GitHub workflow:
1. Fork the repository.
2. Create a new branch for your feature or fix.
3. Commit your changes and open a pull request.
4. Ensure that your code adheres to the project's style and standards.
|