Spaces:
Sleeping
Sleeping
File size: 6,133 Bytes
9a95e8a 9381767 2fae4b8 91b376c 2fae4b8 9a95e8a 9381767 90afc7c 9381767 90afc7c 9381767 2fae4b8 91b376c 2fae4b8 91b376c 2fae4b8 91b376c 3de4779 a4132aa 3de4779 6a885cc f4ed80e 9381767 a4132aa 3de4779 a4132aa f4ed80e 90afc7c 9381767 f4ed80e 9381767 90afc7c 9381767 90afc7c 9381767 f4ed80e 9381767 90afc7c 9381767 90afc7c 9381767 f4ed80e 9381767 90afc7c f4ed80e 9381767 90afc7c 9381767 90afc7c f4ed80e 90afc7c 9381767 90afc7c 9381767 90afc7c 2fae4b8 91b376c 2fae4b8 91b376c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import streamlit as st
from PIL import Image
import requests
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from io import BytesIO
import torch
import torchvision.transforms as T
st.set_page_config(page_title="WikiExplorer AR", layout="centered")
st.title("📷 WikiExplorer AR (Streamlit Edition)")
# --- Multilingual language selector ---
lang = st.selectbox(
"🌐 Select Language",
options=[
("English", "en"),
("हिन्दी", "hi"),
("తెలుగు", "te"),
("தமிழ்", "ta"),
],
format_func=lambda x: x[0]
)
lang_code = lang[1]
# --- Load Hugging Face OCR model ---
@st.cache_resource
def load_trocr():
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
return processor, model
processor, model = load_trocr()
# --- Camera input (main source of place name) ---
st.markdown("**📸 Capture a place name from signage, poster, or board:**")
img_file_buffer = st.camera_input("Take a picture")
# --- Optional text input if OCR fails ---
place_name = st.text_input("📝 Or manually enter the place name (optional)")
# --- OCR from captured image ---
def run_trocr_ocr(image_data):
image = Image.open(image_data).convert("RGB")
transform = T.Compose([
T.Resize((384, 384)),
T.ToTensor()
])
pixel_values = transform(image).unsqueeze(0)
generated_ids = model.generate(pixel_values)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return text.strip()
if img_file_buffer is not None:
st.markdown("### 📷 Captured Image")
st.image(img_file_buffer, caption="Uploaded via camera", use_column_width=True)
try:
with st.spinner("🧠 Running OCR..."):
ocr_text = run_trocr_ocr(BytesIO(img_file_buffer.getvalue()))
if ocr_text:
place_name = ocr_text
st.success(f"🧠 OCR detected: **{place_name}**")
else:
st.warning("OCR ran but could not extract any meaningful text.")
except Exception as e:
st.error(f"OCR failed: {e}")
# --- Translation helpers ---
def translate_text(text, target_lang):
try:
url = f"https://translate.googleapis.com/translate_a/single?client=gtx&sl=en&tl={target_lang}&dt=t&q={requests.utils.quote(text)}"
response = requests.get(url)
if response.status_code == 200:
return response.json()[0][0][0]
except:
return text
return text
def translate_paragraph(text, target_lang):
sentences = text.split('. ')
translated = []
for sentence in sentences:
sentence = sentence.strip()
if sentence:
translated_sentence = translate_text(sentence, target_lang)
translated.append(translated_sentence)
return '. '.join(translated)
# --- Wikipedia + Commons API ---
def get_place_info(place, lang):
if not place:
return None
try:
# Wikipedia API
wiki_url = f"https://{lang}.wikipedia.org/api/rest_v1/page/summary/{place}"
wiki_resp = requests.get(wiki_url)
wiki_data = wiki_resp.json() if wiki_resp.status_code == 200 else {}
# If summary is missing and not English, try English and translate
if (not wiki_data.get("extract") or wiki_data.get("title") == "Not found.") and lang != "en":
fallback_resp = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{place}")
if fallback_resp.status_code == 200:
fallback_data = fallback_resp.json()
translated_summary = translate_paragraph(fallback_data.get("extract", ""), lang)
wiki_data = fallback_data
wiki_data["extract"] = translated_summary
# Wikimedia Commons
commons_url = (
f"https://commons.wikimedia.org/w/api.php"
f"?action=query&format=json&prop=imageinfo&generator=search"
f"&gsrsearch={place}&gsrlimit=5&iiprop=url"
)
commons_resp = requests.get(commons_url)
commons_data = []
if commons_resp.status_code == 200:
result = commons_resp.json().get('query', {}).get('pages', {})
for page in result.values():
imginfo = page.get('imageinfo', [{}])[0]
img_url = imginfo.get('url')
if img_url:
commons_data.append({"url": img_url})
return {
"wikipedia": wiki_data,
"commons": commons_data,
}
except Exception as e:
st.error(f"❌ API request failed: {e}")
return None
# --- Display content ---
if place_name.strip():
st.info(f"🔍 Fetching info for **{place_name}** in **{lang_code.upper()}**...")
data = get_place_info(place_name, lang_code)
if not data:
st.error("⚠️ Could not retrieve data. Check the name or try again.")
else:
st.subheader(f"📖 About {place_name}")
summary = data['wikipedia'].get('extract', 'No information found.')
st.write(summary)
if 'description' in data['wikipedia']:
st.markdown(f"**📌 Type:** _{data['wikipedia']['description']}_")
if 'content_urls' in data['wikipedia']:
st.markdown("[🔗 Full Wikipedia Page](%s)" % data['wikipedia']['content_urls']['desktop']['page'])
if data['commons']:
st.markdown("### 🖼️ Related Images")
for img in data['commons']:
if img and img.get('url'):
st.image(img['url'], width=300)
else:
st.warning("No images found on Wikimedia Commons.")
# --- Footer ---
st.markdown("""
---
- 📸 Take a picture to auto-detect monument/place using Hugging Face OCR.
- ✍️ Optional manual input if OCR fails.
- 🌐 Wikipedia multilingual summary with fallback + sentence-level translation.
- 🖼️ Commons image gallery integration.
- ✅ Works in Hugging Face Spaces with Streamlit + Transformers.
""")
|