File size: 6,133 Bytes
9a95e8a
9381767
 
2fae4b8
91b376c
2fae4b8
 
9a95e8a
9381767
90afc7c
9381767
 
 
90afc7c
9381767
 
 
 
 
 
 
 
 
 
 
2fae4b8
91b376c
2fae4b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91b376c
 
 
 
2fae4b8
 
 
 
 
 
 
 
 
 
91b376c
3de4779
a4132aa
 
 
 
 
 
 
 
 
 
3de4779
 
 
 
 
 
 
 
 
6a885cc
f4ed80e
9381767
 
 
 
 
 
 
 
 
 
a4132aa
 
 
 
 
3de4779
a4132aa
 
f4ed80e
90afc7c
9381767
 
 
f4ed80e
9381767
 
 
 
 
 
 
90afc7c
 
 
9381767
 
 
 
 
 
90afc7c
9381767
 
f4ed80e
9381767
90afc7c
9381767
90afc7c
9381767
f4ed80e
9381767
90afc7c
f4ed80e
 
 
 
 
 
 
 
9381767
 
90afc7c
9381767
90afc7c
f4ed80e
90afc7c
 
9381767
90afc7c
9381767
90afc7c
2fae4b8
 
91b376c
 
2fae4b8
91b376c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import streamlit as st
from PIL import Image
import requests
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from io import BytesIO
import torch
import torchvision.transforms as T

st.set_page_config(page_title="WikiExplorer AR", layout="centered")
st.title("📷 WikiExplorer AR (Streamlit Edition)")

# --- Multilingual language selector ---
lang = st.selectbox(
    "🌐 Select Language",
    options=[
        ("English", "en"),
        ("हिन्दी", "hi"),
        ("తెలుగు", "te"),
        ("தமிழ்", "ta"),
    ],
    format_func=lambda x: x[0]
)

lang_code = lang[1]

# --- Load Hugging Face OCR model ---
@st.cache_resource
def load_trocr():
    processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
    model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
    return processor, model

processor, model = load_trocr()

# --- Camera input (main source of place name) ---
st.markdown("**📸 Capture a place name from signage, poster, or board:**")
img_file_buffer = st.camera_input("Take a picture")

# --- Optional text input if OCR fails ---
place_name = st.text_input("📝 Or manually enter the place name (optional)")

# --- OCR from captured image ---
def run_trocr_ocr(image_data):
    image = Image.open(image_data).convert("RGB")
    transform = T.Compose([
        T.Resize((384, 384)),
        T.ToTensor()
    ])
    pixel_values = transform(image).unsqueeze(0)
    generated_ids = model.generate(pixel_values)
    text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return text.strip()

if img_file_buffer is not None:
    st.markdown("### 📷 Captured Image")
    st.image(img_file_buffer, caption="Uploaded via camera", use_column_width=True)
    try:
        with st.spinner("🧠 Running OCR..."):
            ocr_text = run_trocr_ocr(BytesIO(img_file_buffer.getvalue()))
            if ocr_text:
                place_name = ocr_text
                st.success(f"🧠 OCR detected: **{place_name}**")
            else:
                st.warning("OCR ran but could not extract any meaningful text.")
    except Exception as e:
        st.error(f"OCR failed: {e}")

# --- Translation helpers ---
def translate_text(text, target_lang):
    try:
        url = f"https://translate.googleapis.com/translate_a/single?client=gtx&sl=en&tl={target_lang}&dt=t&q={requests.utils.quote(text)}"
        response = requests.get(url)
        if response.status_code == 200:
            return response.json()[0][0][0]
    except:
        return text
    return text

def translate_paragraph(text, target_lang):
    sentences = text.split('. ')
    translated = []
    for sentence in sentences:
        sentence = sentence.strip()
        if sentence:
            translated_sentence = translate_text(sentence, target_lang)
            translated.append(translated_sentence)
    return '. '.join(translated)

# --- Wikipedia + Commons API ---
def get_place_info(place, lang):
    if not place:
        return None

    try:
        # Wikipedia API
        wiki_url = f"https://{lang}.wikipedia.org/api/rest_v1/page/summary/{place}"
        wiki_resp = requests.get(wiki_url)
        wiki_data = wiki_resp.json() if wiki_resp.status_code == 200 else {}

        # If summary is missing and not English, try English and translate
        if (not wiki_data.get("extract") or wiki_data.get("title") == "Not found.") and lang != "en":
            fallback_resp = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{place}")
            if fallback_resp.status_code == 200:
                fallback_data = fallback_resp.json()
                translated_summary = translate_paragraph(fallback_data.get("extract", ""), lang)
                wiki_data = fallback_data
                wiki_data["extract"] = translated_summary

        # Wikimedia Commons
        commons_url = (
            f"https://commons.wikimedia.org/w/api.php"
            f"?action=query&format=json&prop=imageinfo&generator=search"
            f"&gsrsearch={place}&gsrlimit=5&iiprop=url"
        )
        commons_resp = requests.get(commons_url)
        commons_data = []
        if commons_resp.status_code == 200:
            result = commons_resp.json().get('query', {}).get('pages', {})
            for page in result.values():
                imginfo = page.get('imageinfo', [{}])[0]
                img_url = imginfo.get('url')
                if img_url:
                    commons_data.append({"url": img_url})

        return {
            "wikipedia": wiki_data,
            "commons": commons_data,
        }
    except Exception as e:
        st.error(f"❌ API request failed: {e}")
        return None

# --- Display content ---
if place_name.strip():
    st.info(f"🔍 Fetching info for **{place_name}** in **{lang_code.upper()}**...")
    data = get_place_info(place_name, lang_code)

    if not data:
        st.error("⚠️ Could not retrieve data. Check the name or try again.")
    else:
        st.subheader(f"📖 About {place_name}")
        summary = data['wikipedia'].get('extract', 'No information found.')
        st.write(summary)

        if 'description' in data['wikipedia']:
            st.markdown(f"**📌 Type:** _{data['wikipedia']['description']}_")

        if 'content_urls' in data['wikipedia']:
            st.markdown("[🔗 Full Wikipedia Page](%s)" % data['wikipedia']['content_urls']['desktop']['page'])

        if data['commons']:
            st.markdown("### 🖼️ Related Images")
            for img in data['commons']:
                if img and img.get('url'):
                    st.image(img['url'], width=300)
        else:
            st.warning("No images found on Wikimedia Commons.")

# --- Footer ---
st.markdown("""
---
- 📸 Take a picture to auto-detect monument/place using Hugging Face OCR.
- ✍️ Optional manual input if OCR fails.
- 🌐 Wikipedia multilingual summary with fallback + sentence-level translation.
- 🖼️ Commons image gallery integration.
- ✅ Works in Hugging Face Spaces with Streamlit + Transformers.
""")