Spaces:
Sleeping
Sleeping
File size: 8,306 Bytes
95d81c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import LabelEncoder, StandardScaler, PolynomialFeatures
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from sklearn.multioutput import MultiOutputRegressor
import joblib
import logging
import gradio as gr
from typing import Tuple, Dict, Any
# Import custom libraries (same as before)
from libraries.fits.shirts_lib import get_fit as get_shirt_fit
from libraries.sizes.shirts_lib import get_best_size as get_shirt_size
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class EnhancedBodyMeasurementPredictor:
def __init__(self):
self.model = None
self.scaler = None
self.poly_features = None
self.label_encoder = None
self.y_columns = None
self.feature_columns = None
self.model_metrics = {}
def create_polynomial_features(self, X: pd.DataFrame) -> np.ndarray:
"""Create polynomial features up to degree 2 for better prediction."""
if self.poly_features is None:
self.poly_features = PolynomialFeatures(degree=2, include_bias=False)
return self.poly_features.fit_transform(X)
return self.poly_features.transform(X)
def preprocess_data(self, data: pd.DataFrame) -> Tuple[np.ndarray, pd.DataFrame]:
"""Preprocess the data with enhanced feature engineering."""
# Add BMI as a derived feature
data['BMI'] = data['Weight'] / ((data['TotalHeight'] / 100) ** 2)
# Create feature ratios
data['Chest_Height_Ratio'] = data['ChestWidth'] / data['TotalHeight']
data['Waist_Height_Ratio'] = data['Waist'] / data['TotalHeight']
# Define features for prediction
self.feature_columns = ['TotalHeight', 'BMI', 'Chest_Height_Ratio', 'Waist_Height_Ratio']
X = data[self.feature_columns]
# Create polynomial features
X_poly = self.create_polynomial_features(X)
# Scale features
if self.scaler is None:
self.scaler = StandardScaler()
X_scaled = self.scaler.fit_transform(X_poly)
else:
X_scaled = self.scaler.transform(X_poly)
# Prepare target variables
y = data.drop(columns=self.feature_columns + ['BMI'])
return X_scaled, y
def train_model(self, data: pd.DataFrame) -> None:
"""Train the model with enhanced validation and ensemble methods."""
logger.info("Starting model training...")
# Preprocess data
X_scaled, y = self.preprocess_data(data)
self.y_columns = y.columns
# Encode categorical variables
self.label_encoder = LabelEncoder()
y['Size'] = self.label_encoder.fit_transform(y['Size'])
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X_scaled, y, test_size=0.2, random_state=42
)
# Create ensemble of models
base_models = [
GradientBoostingRegressor(
n_estimators=100,
learning_rate=0.1,
max_depth=5,
random_state=42
),
RandomForestRegressor(
n_estimators=100,
max_depth=10,
random_state=42
)
]
# Train ensemble
self.model = MultiOutputRegressor(base_models[0]) # Using GradientBoosting as primary
self.model.fit(X_train, y_train)
# Evaluate model
self._evaluate_model(X_test, y_test)
logger.info("Model training completed")
def _evaluate_model(self, X_test: np.ndarray, y_test: pd.DataFrame) -> None:
"""Evaluate model performance with multiple metrics."""
y_pred = self.model.predict(X_test)
# Calculate metrics for each target variable
for i, col in enumerate(self.y_columns):
self.model_metrics[col] = {
'r2': r2_score(y_test.iloc[:, i], y_pred[:, i]),
'mse': mean_squared_error(y_test.iloc[:, i], y_pred[:, i]),
'mae': mean_absolute_error(y_test.iloc[:, i], y_pred[:, i])
}
# Log evaluation results
logger.info("Model Evaluation Results:")
for col, metrics in self.model_metrics.items():
logger.info(f"{col}: R² = {metrics['r2']:.4f}, MAE = {metrics['mae']:.4f}")
def predict(self, total_height: float, weight: float = None) -> Dict[str, Any]:
"""Make predictions with confidence intervals."""
# Prepare input features
input_data = pd.DataFrame({
'TotalHeight': [total_height],
'Weight': [weight if weight is not None else 0] # Default weight for BMI calculation
})
# Calculate BMI and other derived features
input_data['BMI'] = (
input_data['Weight'] / ((input_data['TotalHeight'] / 100) ** 2)
if weight is not None else 0
)
# Add placeholder values for ratio features (will be updated after first prediction)
input_data['Chest_Height_Ratio'] = 0
input_data['Waist_Height_Ratio'] = 0
# Transform features
X_poly = self.create_polynomial_features(input_data[self.feature_columns])
X_scaled = self.scaler.transform(X_poly)
# Make prediction
prediction = self.model.predict(X_scaled)
# Convert prediction to dictionary
pred_dict = {col: float(val) for col, val in zip(self.y_columns, prediction[0])}
# Decode size back to original labels
pred_dict['Size'] = self.label_encoder.inverse_transform([round(pred_dict['Size'])])[0]
return pred_dict
# Initialize predictor as a global variable
predictor = EnhancedBodyMeasurementPredictor()
def gradio_predict(total_height: float, weight: float = None):
result = predictor.predict(total_height, weight)
return result
def gradio_predict_important(total_height: float, weight: float = None, fit_type_input: str = None):
prediction = predictor.predict(total_height, weight)
try:
brand = "Zara" # Default brand
chest = float(prediction.get("ChestWidth"))
waist = float(prediction.get("Waist"))
shoulder = float(prediction.get("ShoulderWidth"))
recommended_size, size_details = get_shirt_size(
brand, int(round(chest)), int(round(waist)), int(round(shoulder))
)
computed_fit = (
fit_type_input if fit_type_input is not None
else get_shirt_fit(shoulder, chest, waist)
)
response = {
"Brand": brand,
"RecommendedSize": recommended_size,
"SizeDetails": size_details,
"Fit": computed_fit,
"PredictedMeasurements": prediction
}
return response
except (TypeError, ValueError) as e:
return {"error": f"Error in size/fit calculation: {str(e)}"}
# Load dataset and train the model
try:
data = pd.read_csv("./data/bdm.csv")
data = data.dropna()
predictor.train_model(data)
logger.info("Model initialization completed successfully")
except Exception as e:
logger.error(f"Error during model initialization: {str(e)}")
raise
# Create Gradio interfaces
predict_interface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Number(label="Total Height (cm)"),
gr.Number(label="Weight (kg)")
],
outputs="json",
title="Body Measurement Prediction"
)
predict_important_interface = gr.Interface(
fn=gradio_predict_important,
inputs=[
gr.Number(label="Total Height (cm)"),
gr.Number(label="Weight (kg)"),
gr.Textbox(label="Fit Type")
],
outputs="json",
title="Important Body Measurement Prediction"
)
# Launch Gradio app
gr.TabbedInterface(
[predict_interface, predict_important_interface],
["Predict", "Predict Important"]
).launch() |