Spaces:
Runtime error
Runtime error
| """Based on https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/notebooks/flux.1-image-generation/flux_helper.py""" | |
| import inspect | |
| import json | |
| from pathlib import Path | |
| from typing import Any, Dict, List, Optional, Union | |
| import numpy as np | |
| import openvino as ov | |
| import torch | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from transformers import AutoTokenizer | |
| TRANSFORMER_PATH = Path("transformer/transformer.xml") | |
| VAE_DECODER_PATH = Path("vae/vae_decoder.xml") | |
| TEXT_ENCODER_PATH = Path("text_encoder/text_encoder.xml") | |
| TEXT_ENCODER_2_PATH = Path("text_encoder_2/text_encoder_2.xml") | |
| def cleanup_torchscript_cache(): | |
| """ | |
| Helper for removing cached model representation | |
| """ | |
| torch._C._jit_clear_class_registry() | |
| torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore() | |
| torch.jit._state._clear_class_state() | |
| def _prepare_latent_image_ids( | |
| batch_size, height, width, device=torch.device("cpu"), dtype=torch.float32 | |
| ): | |
| latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
| latent_image_ids[..., 1] = ( | |
| latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
| ) | |
| latent_image_ids[..., 2] = ( | |
| latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
| ) | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = ( | |
| latent_image_ids.shape | |
| ) | |
| latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
| latent_image_ids = latent_image_ids.reshape( | |
| batch_size, | |
| latent_image_id_height * latent_image_id_width, | |
| latent_image_id_channels, | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: | |
| assert dim % 2 == 0, "The dimension must be even." | |
| scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim | |
| omega = 1.0 / (theta**scale) | |
| batch_size, seq_length = pos.shape | |
| out = pos.unsqueeze(-1) * omega.unsqueeze(0).unsqueeze(0) | |
| cos_out = torch.cos(out) | |
| sin_out = torch.sin(out) | |
| stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) | |
| out = stacked_out.view(batch_size, -1, dim // 2, 2, 2) | |
| return out.float() | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.16, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError( | |
| "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
| ) | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class OVFluxPipeline(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| scheduler, | |
| transformer, | |
| vae, | |
| text_encoder, | |
| text_encoder_2, | |
| tokenizer, | |
| tokenizer_2, | |
| transformer_config, | |
| vae_config, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_config = vae_config | |
| self.transformer_config = transformer_config | |
| self.vae_scale_factor = 2 ** ( | |
| len(self.vae_config.get("block_out_channels", [0] * 16)) | |
| if hasattr(self, "vae") and self.vae is not None | |
| else 16 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length | |
| if hasattr(self, "tokenizer") and self.tokenizer is not None | |
| else 77 | |
| ) | |
| self.default_sample_size = 64 | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| ): | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = self.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_embeds = torch.from_numpy(self.text_encoder_2(text_input_ids)[0]) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| return prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| ): | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_overflowing_tokens=False, | |
| return_length=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_embeds = torch.from_numpy(self.text_encoder(text_input_ids)[1]) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
| return prompt_embeds | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in all text-encoders | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # We only use the pooled prompt output from the CLIPTextModel | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3) | |
| text_ids = text_ids.repeat(num_images_per_prompt, 1, 1) | |
| return prompt_embeds, pooled_prompt_embeds, text_ids | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| max_sequence_length=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and ( | |
| not isinstance(prompt, str) and not isinstance(prompt, list) | |
| ): | |
| raise ValueError( | |
| f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
| ) | |
| elif prompt_2 is not None and ( | |
| not isinstance(prompt_2, str) and not isinstance(prompt_2, list) | |
| ): | |
| raise ValueError( | |
| f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}" | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError( | |
| f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}" | |
| ) | |
| def _prepare_latent_image_ids(batch_size, height, width): | |
| return _prepare_latent_image_ids(batch_size, height, width) | |
| def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
| latents = latents.view( | |
| batch_size, num_channels_latents, height // 2, 2, width // 2, 2 | |
| ) | |
| latents = latents.permute(0, 2, 4, 1, 3, 5) | |
| latents = latents.reshape( | |
| batch_size, (height // 2) * (width // 2), num_channels_latents * 4 | |
| ) | |
| return latents | |
| def _unpack_latents(latents, height, width, vae_scale_factor): | |
| batch_size, num_patches, channels = latents.shape | |
| height = height // vae_scale_factor | |
| width = width // vae_scale_factor | |
| latents = latents.view(batch_size, height, width, channels // 4, 2, 2) | |
| latents = latents.permute(0, 3, 1, 4, 2, 5) | |
| latents = latents.reshape( | |
| batch_size, channels // (2 * 2), height * 2, width * 2 | |
| ) | |
| return latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| generator, | |
| latents=None, | |
| ): | |
| height = 2 * (int(height) // self.vae_scale_factor) | |
| width = 2 * (int(width) // self.vae_scale_factor) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| if latents is not None: | |
| latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width) | |
| return latents, latent_image_ids | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| latents = randn_tensor(shape, generator=generator) | |
| latents = self._pack_latents( | |
| latents, batch_size, num_channels_latents, height, width | |
| ) | |
| latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width) | |
| return latents, latent_image_ids | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| negative_prompt: str = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 7.0, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| max_sequence_length: int = 512, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 7.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer_config.get("in_channels", 64) // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| generator, | |
| latents, | |
| ) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| scheduler=self.scheduler, | |
| num_inference_steps=num_inference_steps, | |
| timesteps=timesteps, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max( | |
| len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| # handle guidance | |
| if self.transformer_config.get("guidance_embeds"): | |
| guidance = torch.tensor([guidance_scale]) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| transformer_input = { | |
| "hidden_states": latents, | |
| "timestep": timestep / 1000, | |
| "pooled_projections": pooled_prompt_embeds, | |
| "encoder_hidden_states": prompt_embeds, | |
| "txt_ids": text_ids, | |
| "img_ids": latent_image_ids, | |
| } | |
| if guidance is not None: | |
| transformer_input["guidance"] = guidance | |
| noise_pred = torch.from_numpy(self.transformer(transformer_input)[0]) | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, return_dict=False | |
| )[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents( | |
| latents, height, width, self.vae_scale_factor | |
| ) | |
| latents = latents / self.vae_config.get( | |
| "scaling_factor" | |
| ) + self.vae_config.get("shift_factor") | |
| image = self.vae(latents)[0] | |
| image = self.image_processor.postprocess( | |
| torch.from_numpy(image), output_type=output_type | |
| ) | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
| def init_pipeline(model_dir, models_dict: Dict[str, Any], device: str): | |
| pipeline_args = {} | |
| print("OpenVINO FLUX Model compilation") | |
| core = ov.Core() | |
| for model_name, model_path in models_dict.items(): | |
| pipeline_args[model_name] = core.compile_model(model_path, device) | |
| print(f"✅ {model_name} - Done!") | |
| transformer_path = models_dict["transformer"] | |
| transformer_config_path = transformer_path.parent / "config.json" | |
| with transformer_config_path.open("r") as f: | |
| transformer_config = json.load(f) | |
| vae_path = models_dict["vae"] | |
| vae_config_path = vae_path.parent / "config.json" | |
| with vae_config_path.open("r") as f: | |
| vae_config = json.load(f) | |
| pipeline_args["vae_config"] = vae_config | |
| pipeline_args["transformer_config"] = transformer_config | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_dir / "scheduler") | |
| tokenizer = AutoTokenizer.from_pretrained(model_dir / "tokenizer") | |
| tokenizer_2 = AutoTokenizer.from_pretrained(model_dir / "tokenizer_2") | |
| pipeline_args["scheduler"] = scheduler | |
| pipeline_args["tokenizer"] = tokenizer | |
| pipeline_args["tokenizer_2"] = tokenizer_2 | |
| ov_pipe = OVFluxPipeline(**pipeline_args) | |
| return ov_pipe | |