Spaces:
Runtime error
Runtime error
Commit
·
c402060
1
Parent(s):
af74ede
Upload 4 files
Browse files- Dockerfile +11 -0
- caption_api.py +140 -0
- captions.txt +0 -0
- requirements.txt +7 -0
Dockerfile
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
WORKDIR /code
|
| 4 |
+
|
| 5 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 6 |
+
|
| 7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 8 |
+
|
| 9 |
+
COPY . .
|
| 10 |
+
|
| 11 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
caption_api.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask,request
|
| 2 |
+
import google.generativeai as palm
|
| 3 |
+
import re
|
| 4 |
+
import pickle
|
| 5 |
+
import numpy as np
|
| 6 |
+
import requests
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input
|
| 10 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
| 11 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 12 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 13 |
+
from tensorflow.keras.models import Model
|
| 14 |
+
from tensorflow.keras.utils import to_categorical, plot_model
|
| 15 |
+
from tensorflow.keras.layers import Input, Dense, LSTM, Embedding, Dropout, add
|
| 16 |
+
from tensorflow.keras.models import load_model
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
#tokenizer=pickle.load(open('tokenizer.pkl','rb'))
|
| 20 |
+
#vgg_model = load_model('vgg_model.h5')
|
| 21 |
+
model = load_model('best_model.h5')
|
| 22 |
+
max_len=35
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
with open('captions.txt','r') as f:
|
| 26 |
+
next(f)
|
| 27 |
+
caption_file=f.read()
|
| 28 |
+
|
| 29 |
+
captions={}
|
| 30 |
+
for line in caption_file.split('\n'):
|
| 31 |
+
values=line.split(",")
|
| 32 |
+
if(len(line)<2):
|
| 33 |
+
continue
|
| 34 |
+
#get image_id
|
| 35 |
+
image_id=values[0]
|
| 36 |
+
image_id=image_id.split('.')[0]
|
| 37 |
+
#get caption
|
| 38 |
+
caption=values[1:]
|
| 39 |
+
caption=" ".join(caption)
|
| 40 |
+
#mapping caption
|
| 41 |
+
if image_id not in captions:
|
| 42 |
+
captions[image_id]=[]
|
| 43 |
+
captions[image_id].append(caption)
|
| 44 |
+
|
| 45 |
+
def clean(captions):
|
| 46 |
+
for key,caption_ in captions.items():
|
| 47 |
+
for i in range(len(caption_)):
|
| 48 |
+
caption=caption_[i]
|
| 49 |
+
#process caption
|
| 50 |
+
caption=caption.lower()
|
| 51 |
+
caption = re.sub('[^a-zA-Z]', ' ', caption)
|
| 52 |
+
caption = re.sub('\s+', ' ', caption)
|
| 53 |
+
caption=" ".join([word for word in caption.split() if len(word)>1])
|
| 54 |
+
caption="startseq "+caption+" endseq"
|
| 55 |
+
caption_[i]=caption
|
| 56 |
+
|
| 57 |
+
clean(captions)
|
| 58 |
+
|
| 59 |
+
all_captions=[]
|
| 60 |
+
for key,caption_ in captions.items():
|
| 61 |
+
for i in range(len(caption_)):
|
| 62 |
+
all_captions.append(caption_[i])
|
| 63 |
+
|
| 64 |
+
tokenizer=Tokenizer()
|
| 65 |
+
tokenizer.fit_on_texts(all_captions)
|
| 66 |
+
|
| 67 |
+
# load vgg16 model
|
| 68 |
+
vgg_model = VGG16()
|
| 69 |
+
# restructure the model
|
| 70 |
+
vgg_model = Model(inputs=vgg_model.inputs, outputs=vgg_model.layers[-2].output)
|
| 71 |
+
|
| 72 |
+
def index_to_word(indx,tokenizer):
|
| 73 |
+
for word,index in tokenizer.word_index.items():
|
| 74 |
+
if index == indx:
|
| 75 |
+
return word
|
| 76 |
+
return None
|
| 77 |
+
|
| 78 |
+
def predict_captions(model,image,tokenizer,max_len):
|
| 79 |
+
in_text='startseq'
|
| 80 |
+
for i in range(max_len):
|
| 81 |
+
seq=tokenizer.texts_to_sequences([in_text])[0]
|
| 82 |
+
seq=pad_sequences([seq],max_len)[0]
|
| 83 |
+
if len(image.shape) == 3:
|
| 84 |
+
image = np.expand_dims(image, axis=0)
|
| 85 |
+
y_pred=model.predict([image, np.expand_dims(seq, axis=0)],verbose=0)
|
| 86 |
+
y_pred=np.argmax(y_pred)
|
| 87 |
+
|
| 88 |
+
word=index_to_word(y_pred,tokenizer)
|
| 89 |
+
if word == None:
|
| 90 |
+
break
|
| 91 |
+
in_text += " " + word
|
| 92 |
+
if word == 'endseq':
|
| 93 |
+
break
|
| 94 |
+
return in_text
|
| 95 |
+
|
| 96 |
+
def caption_generator(url):
|
| 97 |
+
#load image
|
| 98 |
+
response = requests.get(url)
|
| 99 |
+
image= Image.open(BytesIO(response.content))
|
| 100 |
+
image = image.resize((224,224))
|
| 101 |
+
#convert image into numpy array
|
| 102 |
+
image=img_to_array(image)
|
| 103 |
+
#reshape image
|
| 104 |
+
image=image.reshape((1,image.shape[0],image.shape[1],image.shape[2]))
|
| 105 |
+
#preprrocess image for vgg16
|
| 106 |
+
image=preprocess_input(image)
|
| 107 |
+
#extract features
|
| 108 |
+
feature=vgg_model.predict(image,verbose=0)
|
| 109 |
+
y_pred = predict_captions(model, feature, tokenizer, max_len)
|
| 110 |
+
#plt.imshow(image_pic)
|
| 111 |
+
return y_pred
|
| 112 |
+
|
| 113 |
+
app=Flask(__name__)
|
| 114 |
+
|
| 115 |
+
@app.route('/')
|
| 116 |
+
def home():
|
| 117 |
+
return "HELLO WORLD"
|
| 118 |
+
|
| 119 |
+
@app.route('/predict',methods=['POST'])
|
| 120 |
+
def predict():
|
| 121 |
+
url=request.get_json()
|
| 122 |
+
print(url)
|
| 123 |
+
result=caption_generator(url['url'])
|
| 124 |
+
palm.configure(api_key='AIzaSyDDXOjF1BBgJM6g1tMV-6tcI7xh9-ctvQU')
|
| 125 |
+
#models = [m for m in palm.list_models() if 'generateText' in m.supported_generation_methods]
|
| 126 |
+
#model = models[0].name
|
| 127 |
+
model="models/text-bison-001"
|
| 128 |
+
prompt = "Generate a creative & attractive instagram caption of 10-30 words words for" + str(result)
|
| 129 |
+
completion = palm.generate_text(
|
| 130 |
+
model=model,
|
| 131 |
+
prompt=prompt,
|
| 132 |
+
temperature=0,
|
| 133 |
+
# The maximum length of the response
|
| 134 |
+
max_output_tokens=100,
|
| 135 |
+
)
|
| 136 |
+
return completion.result
|
| 137 |
+
#return {'caption':str(result)}
|
| 138 |
+
|
| 139 |
+
if __name__ == '__main__':
|
| 140 |
+
app.run(debug=True)
|
captions.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Flask
|
| 2 |
+
numpy
|
| 3 |
+
Pillow
|
| 4 |
+
protobuf
|
| 5 |
+
Requests
|
| 6 |
+
tensorflow
|
| 7 |
+
tensorflow_intel
|