import gradio as gr from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") demo_conversation1 = [ {"role": "user", "content": "Hi there!"}, {"role": "assistant", "content": "Hello, human!"} ] demo_conversation2 = [ {"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hi there!"} ] conversations = [demo_conversation1, demo_conversation2] def apply_chat_template(template): tokenizer.chat_template = template out = "" for i, conversation in enumerate(conversations): without_gen = tokenizer.apply_chat_template(conversation, tokenize=False) with_gen = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) out += f"Conversation {i} without generation prompt:\n\n{without_gen}\n\nConversation {i} with generation prompt:\n\n{with_gen}\n\n" iface = gr.Interface(fn=apply_chat_template, inputs="text", outputs="text") iface.launch()