File size: 1,412 Bytes
3d8b295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69460b6
 
 
 
 
 
 
3d8b295
 
 
 
9512d4d
3770856
 
 
9512d4d
 
3396f08
3d8b295
69460b6
 
 
 
3d8b295
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")

demo_conversation1 = [
    {"role": "user", "content": "Hi there!"},
    {"role": "assistant", "content": "Hello, human!"}
]

demo_conversation2 = [
    {"role": "system", "content": "You are a helpful chatbot."},
    {"role": "user", "content": "Hi there!"}
]

default_template = """{% for message in messages %}
{{ "<|im_start|>" + message["role"] + \n + message["content"] + "<|im_end|>\n" }}
{% endfor %}
{% if add_generation_prompt %}
{{ "<|im_start|>assistant\n" }}
{% endif %}"""

conversations = [demo_conversation1, demo_conversation2]

def apply_chat_template(template):
    tokenizer.chat_template = template
    outputs = []
    for i, conversation in enumerate(conversations):
        without_gen = tokenizer.apply_chat_template(conversation, tokenize=False)
        with_gen = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
        out = f"Conversation {i} without generation prompt:\n\n{without_gen}\n\nConversation {i} with generation prompt:\n\n{with_gen}\n\n"
        outputs.append(out)
    return tuple(outputs)

iface = gr.Interface(
    fn=apply_chat_template,
    inputs=gr.TextArea(value=default_template, lines=10, max_lines=30, label="Chat Template"),
    outputs=["text"] * len(conversations))
iface.launch()