import re import hashlib import io import json from datetime import datetime from typing import Dict, List, Tuple from bson import ObjectId import logging from config import logger # Add to your utils.py from fastapi import WebSocket import asyncio class NotificationManager: def __init__(self): self.active_connections = {} self.notification_queue = asyncio.Queue() async def connect(self, websocket: WebSocket, user_id: str): await websocket.accept() self.active_connections[user_id] = websocket def disconnect(self, user_id: str): if user_id in self.active_connections: del self.active_connections[user_id] async def broadcast_notification(self, notification: dict): """Broadcast to all connected clients""" for connection in self.active_connections.values(): try: await connection.send_json({ "type": "notification", "data": notification }) except Exception as e: logger.error(f"Error sending notification: {e}") notification_manager = NotificationManager() async def broadcast_notification(notification: dict): """Broadcast notification to relevant users""" # Determine recipients based on notification type/priority recipients = [] if notification["priority"] == "high": recipients = ["psychiatrist", "emergency_team", "primary_care"] else: recipients = ["primary_care", "case_manager"] # Add to each recipient's notification queue await notification_manager.notification_queue.put({ "recipients": recipients, "notification": notification }) def clean_text_response(text: str) -> str: text = re.sub(r'\n\s*\n', '\n\n', text) text = re.sub(r'[ ]+', ' ', text) return text.replace("**", "").replace("__", "").strip() def extract_section(text: str, heading: str) -> str: try: pattern = rf"{re.escape(heading)}:\s*\n(.*?)(?=\n[A-Z][^\n]*:|\Z)" match = re.search(pattern, text, re.DOTALL | re.IGNORECASE) return match.group(1).strip() if match else "" except Exception as e: logger.error(f"Section extraction failed for heading '{heading}': {e}") return "" def structure_medical_response(text: str) -> Dict: def extract_improved(text: str, heading: str) -> str: patterns = [ rf"{re.escape(heading)}:\s*\n(.*?)(?=\n\s*\n|\Z)", rf"\*\*{re.escape(heading)}\*\*:\s*\n(.*?)(?=\n\s*\n|\Z)", rf"{re.escape(heading)}[\s\-]+(.*?)(?=\n\s*\n|\Z)", rf"\n{re.escape(heading)}\s*\n(.*?)(?=\n\s*\n|\Z)" ] for pattern in patterns: match = re.search(pattern, text, re.DOTALL | re.IGNORECASE) if match: content = match.group(1).strip() content = re.sub(r'^\s*[\-\*]\s*', '', content, flags=re.MULTILINE) return content return "" text = text.replace('**', '').replace('__', '') return { "summary": extract_improved(text, "Summary of Patient's Medical History") or extract_improved(text, "Summarize the patient's medical history"), "risks": extract_improved(text, "Identify Risks or Red Flags") or extract_improved(text, "Risks or Red Flags"), "missed_issues": extract_improved(text, "Missed Diagnoses or Treatments") or extract_improved(text, "What the doctor might have missed"), "recommendations": extract_improved(text, "Suggest Next Clinical Steps") or extract_improved(text, "Suggested Clinical Actions") } def serialize_patient(patient: dict) -> dict: patient_copy = patient.copy() if "_id" in patient_copy: patient_copy["_id"] = str(patient_copy["_id"]) return patient_copy def compute_patient_data_hash(data: dict) -> str: serialized = json.dumps(data, sort_keys=True) return hashlib.sha256(serialized.encode()).hexdigest() def compute_file_content_hash(file_content: bytes) -> str: return hashlib.sha256(file_content).hexdigest()