from fastapi import APIRouter, Depends, HTTPException, UploadFile, File, Query, Form, Path from fastapi.responses import StreamingResponse, JSONResponse, FileResponse from fastapi.encoders import jsonable_encoder from typing import Optional, List from pydantic import BaseModel from auth import get_current_user from utils import clean_text_response from analysis import analyze_patient_report from voice import recognize_speech, text_to_speech, extract_text_from_pdf from docx import Document import re import io from datetime import datetime from bson import ObjectId import asyncio from bson.errors import InvalidId import base64 import os from pathlib import Path as PathLib import tempfile import subprocess # Define the ChatRequest model with an optional patient_id class ChatRequest(BaseModel): message: str history: Optional[List[dict]] = None format: Optional[str] = "clean" temperature: Optional[float] = 0.7 max_new_tokens: Optional[int] = 512 patient_id: Optional[str] = None class VoiceOutputRequest(BaseModel): text: str language: str = "en-US" slow: bool = False return_format: str = "mp3" class RiskLevel(BaseModel): level: str score: float factors: Optional[List[str]] = None def create_router(agent, logger, patients_collection, analysis_collection, users_collection, chats_collection, notifications_collection): router = APIRouter() @router.get("/status") async def status(current_user: dict = Depends(get_current_user)): logger.info(f"Status endpoint accessed by {current_user['email']}") return { "status": "running", "timestamp": datetime.utcnow().isoformat(), "version": "2.6.0", "features": ["chat", "voice-input", "voice-output", "patient-analysis", "report-upload", "patient-reports-pdf", "all-patients-reports-pdf"] } @router.get("/patients/analysis-results") async def get_patient_analysis_results( name: Optional[str] = Query(None), current_user: dict = Depends(get_current_user) ): logger.info(f"Fetching analysis results by {current_user['email']}") try: query = {} if name: name_regex = re.compile(name, re.IGNORECASE) matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None) patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p] if not patient_ids: return [] query = {"patient_id": {"$in": patient_ids}} analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100) enriched_results = [] for analysis in analyses: patient = await patients_collection.find_one({"fhir_id": analysis.get("patient_id")}) if not patient: continue # Skip if patient no longer exists analysis["full_name"] = patient.get("full_name", "Unknown") analysis["_id"] = str(analysis["_id"]) enriched_results.append(analysis) return enriched_results except Exception as e: logger.error(f"Error fetching analysis results: {e}") raise HTTPException(status_code=500, detail="Failed to retrieve analysis results") @router.get("/patients/{patient_id}/analysis-reports/pdf") async def get_patient_analysis_reports_pdf( patient_id: str = Path(..., description="The ID of the patient"), current_user: dict = Depends(get_current_user) ): logger.info(f"Generating PDF analysis reports for patient {patient_id} by {current_user['email']}") try: # Fetch patient details patient = await patients_collection.find_one({"fhir_id": patient_id}) if not patient: raise HTTPException(status_code=404, detail="Patient not found") # Fetch all analyses for the patient analyses = await analysis_collection.find({"patient_id": patient_id}).sort("timestamp", -1).to_list(length=None) if not analyses: raise HTTPException(status_code=404, detail="No analysis reports found for this patient") # Creating LaTeX document latex_content = r""" \documentclass[a4paper,12pt]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{lmodern} \usepackage{geometry} \geometry{margin=1in} \usepackage{enumitem} \usepackage{fancyhdr} \usepackage{lastpage} \usepackage{datetime} \pagestyle{fancy} \fancyhf{} \rhead{Patient Analysis Report} \lhead{\today} \cfoot{Page \thepage\ of \pageref{LastPage}} \begin{document} """ # Adding patient information patient_name = patient.get("full_name", "Unknown") latex_content += f""" \\section*{{Analysis Reports for {patient_name} (ID: {patient_id})}} \\textbf{{Patient Name:}} {patient_name}\\\\ \\textbf{{Patient ID:}} {patient_id}\\\\ \\textbf{{Generated on:}} \\today\\\\ """ # Adding analysis reports for idx, analysis in enumerate(analyses, 1): timestamp = analysis.get("timestamp", datetime.utcnow()).strftime("%Y-%m-%d %H:%M:%S") suicide_risk = analysis.get("suicide_risk", {}) risk_level = suicide_risk.get("level", "none").capitalize() risk_score = suicide_risk.get("score", 0.0) risk_factors = ", ".join(suicide_risk.get("factors", [])) or "None" latex_content += f""" \\subsection*{{Report {idx} - {timestamp}}} \\begin{{description}} \\item[Risk Level:] {risk_level} \\item[Risk Score:] {risk_score:.2f} \\item[Risk Factors:] {risk_factors} """ # Adding additional analysis details if available if analysis.get("summary"): latex_content += f" \\item[Summary:] {analysis['summary']}\n" if analysis.get("recommendations"): recommendations = ", ".join(analysis["recommendations"]) if isinstance(analysis["recommendations"], list) else analysis["recommendations"] latex_content += f" \\item[Recommendations:] {recommendations}\n" latex_content += r"\end{description}\vspace{0.5cm}" latex_content += r"\end{document}" # Creating temporary directory for LaTeX compilation with tempfile.TemporaryDirectory() as tmpdirname: latex_file = PathLib(tmpdirname) / "report.tex" pdf_file = PathLib(tmpdirname) / "report.pdf" # Writing LaTeX content to file with open(latex_file, "w", encoding="utf-8") as f: f.write(latex_content) # Compiling LaTeX to PDF using pdflatex try: subprocess.run( ["pdflatex", "-output-directory", tmpdirname, str(latex_file)], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) except subprocess.CalledProcessError as e: logger.error(f"LaTeX compilation failed: {e.stderr}") raise HTTPException(status_code=500, detail="Failed to generate PDF report") if not pdf_file.exists(): raise HTTPException(status_code=500, detail="PDF generation failed") # Reading the generated PDF with open(pdf_file, "rb") as f: pdf_content = f.read() # Returning the PDF as a response return FileResponse( pdf_file, media_type="application/pdf", headers={"Content-Disposition": f"attachment; filename={patient_name.replace(' ', '_')}_{patient_id}_analysis_reports.pdf"} ) except HTTPException: raise except Exception as e: logger.error(f"Error generating PDF report for patient {patient_id}: {str(e)}") raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}") @router.get("/patients/analysis-reports/all/pdf") async def get_all_patients_analysis_reports_pdf( current_user: dict = Depends(get_current_user) ): logger.info(f"Generating PDF analysis reports for all patients by {current_user['email']}") try: # Fetch all patients patients = await patients_collection.find().to_list(length=None) if not patients: raise HTTPException(status_code=404, detail="No patients found") # Creating LaTeX document latex_content = r""" \documentclass[a4paper,12pt]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{lmodern} \usepackage{geometry} \geometry{margin=1in} \usepackage{enumitem} \usepackage{fancyhdr} \usepackage{lastpage} \usepackage{datetime} \pagestyle{fancy} \fancyhf{} \rhead{All Patients Analysis Reports} \lhead{\today} \cfoot{Page \thepage\ of \pageref{LastPage}} \begin{document} \section*{Analysis Reports for All Patients} \textbf{Generated on:} \today\\\\ """ # Flag to track if any analyses exist has_analyses = False # Iterate through each patient for patient in patients: patient_id = patient.get("fhir_id") patient_name = patient.get("full_name", "Unknown") # Fetch all analyses for the current patient analyses = await analysis_collection.find({"patient_id": patient_id}).sort("timestamp", -1).to_list(length=None) if not analyses: continue # Skip patients with no analyses has_analyses = True # Adding patient section latex_content += f""" \\section*{{Patient: {patient_name} (ID: {patient_id})}} \\textbf{{Patient Name:}} {patient_name}\\\\ \\textbf{{Patient ID:}} {patient_id}\\\\ """ # Adding analysis reports for the patient for idx, analysis in enumerate(analyses, 1): timestamp = analysis.get("timestamp", datetime.utcnow()).strftime("%Y-%m-%d %H:%M:%S") suicide_risk = analysis.get("suicide_risk", {}) risk_level = suicide_risk.get("level", "none").capitalize() risk_score = suicide_risk.get("score", 0.0) risk_factors = ", ".join(suicide_risk.get("factors", [])) or "None" latex_content += f""" \\subsection*{{Report {idx} - {timestamp}}} \\begin{{description}} \\item[Risk Level:] {risk_level} \\item[Risk Score:] {risk_score:.2f} \\item[Risk Factors:] {risk_factors} """ # Adding additional analysis details if available if analysis.get("summary"): latex_content += f" \\item[Summary:] {analysis['summary']}\n" if analysis.get("recommendations"): recommendations = ", ".join(analysis["recommendations"]) if isinstance(analysis["recommendations"], list) else analysis["recommendations"] latex_content += f" \\item[Recommendations:] {recommendations}\n" latex_content += r"\end{description}\vspace{0.5cm}" latex_content += r"\end{document}" if not has_analyses: raise HTTPException(status_code=404, detail="No analysis reports found for any patients") # Creating temporary directory for LaTeX compilation with tempfile.TemporaryDirectory() as tmpdirname: latex_file = PathLib(tmpdirname) / "all_reports.tex" pdf_file = PathLib(tmpdirname) / "all_reports.pdf" # Writing LaTeX content to file with open(latex_file, "w", encoding="utf-8") as f: f.write(latex_content) # Compiling LaTeX to PDF using pdflatex try: subprocess.run( ["pdflatex", "-output-directory", tmpdirname, str(latex_file)], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) except subprocess.CalledProcessError as e: logger.error(f"LaTeX compilation failed: {e.stderr}") raise HTTPException(status_code=500, detail="Failed to generate PDF report") if not pdf_file.exists(): raise HTTPException(status_code=500, detail="PDF generation failed") # Reading the generated PDF with open(pdf_file, "rb") as f: pdf_content = f.read() # Returning the PDF as a response return FileResponse( pdf_file, media_type="application/pdf", headers={"Content-Disposition": f"attachment; filename=all_patients_analysis_reports_{datetime.utcnow().strftime('%Y%m%d')}.pdf"} ) except HTTPException: raise except Exception as e: logger.error(f"Error generating PDF report for all patients: {str(e)}") raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}") @router.post("/chat-stream") async def chat_stream_endpoint( request: ChatRequest, current_user: dict = Depends(get_current_user) ): logger.info(f"Chat stream initiated by {current_user['email']}") async def token_stream(): try: conversation = [{"role": "system", "content": agent.chat_prompt}] if request.history: conversation.extend(request.history) conversation.append({"role": "user", "content": request.message}) input_ids = agent.tokenizer.apply_chat_template( conversation, add_generation_prompt=True, return_tensors="pt" ).to(agent.device) output = agent.model.generate( input_ids, do_sample=True, temperature=request.temperature, max_new_tokens=request.max_new_tokens, pad_token_id=agent.tokenizer.eos_token_id, return_dict_in_generate=True ) text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True) cleaned_text = clean_text_response(text) full_response = "" # Store chat session in the chats_collection chat_entry = { "user_id": current_user["email"], "patient_id": request.patient_id, "message": request.message, "response": cleaned_text, "chat_type": "chat", "timestamp": datetime.utcnow(), "temperature": request.temperature, "max_new_tokens": request.max_new_tokens } logger.info(f"Attempting to insert chat entry into chats_collection: {chat_entry}") try: result = await chats_collection.insert_one(chat_entry) chat_entry["_id"] = str(result.inserted_id) logger.info(f"Successfully inserted chat entry with ID: {chat_entry['_id']}") except Exception as db_error: logger.error(f"Failed to insert chat entry into chats_collection: {str(db_error)}") yield f"⚠️ Error: Failed to store chat in database: {str(db_error)}" return for chunk in cleaned_text.split(): full_response += chunk + " " yield chunk + " " await asyncio.sleep(0.05) # Update chat entry with full response try: update_result = await chats_collection.update_one( {"_id": result.inserted_id}, {"$set": {"response": full_response.strip()}} ) logger.info(f"Updated chat entry {chat_entry['_id']}: matched {update_result.matched_count}, modified {update_result.modified_count}") except Exception as update_error: logger.error(f"Failed to update chat entry {chat_entry['_id']}: {str(update_error)}") yield f"⚠️ Warning: Chat streamed successfully, but failed to update in database: {str(update_error)}" except Exception as e: logger.error(f"Streaming error: {e}") yield f"⚠️ Error: {e}" return StreamingResponse(token_stream(), media_type="text/plain") @router.get("/chats") async def get_chats( current_user: dict = Depends(get_current_user) ): logger.info(f"Fetching chats for {current_user['email']}") try: chats = await chats_collection.find({"user_id": current_user["email"], "chat_type": "chat"}).sort("timestamp", -1).to_list(length=100) logger.info(f"Retrieved {len(chats)} chats for {current_user['email']}") return [ { "id": str(chat["_id"]), "title": chat.get("message", "Untitled Chat")[:30], "timestamp": chat["timestamp"].isoformat(), "message": chat["message"], "response": chat["response"] } for chat in chats ] except Exception as e: logger.error(f"Error fetching chats: {e}") raise HTTPException(status_code=500, detail="Failed to retrieve chats") @router.get("/notifications") async def get_notifications( current_user: dict = Depends(get_current_user) ): logger.info(f"Fetching notifications for {current_user['email']}") try: # Fetch notifications for the current user notifications = await notifications_collection.find({"user_id": current_user["email"]}).sort("timestamp", -1).to_list(length=10) logger.info(f"Retrieved {len(notifications)} notifications for {current_user['email']}") return [ { "id": str(notification["_id"]), "title": f"Alert for Patient {notification.get('patient_id', 'Unknown')}", "message": notification.get("message", "No message"), "timestamp": notification.get("timestamp", datetime.utcnow()).isoformat(), "severity": notification.get("severity", "info"), "read": notification.get("read", False) } for notification in notifications ] except Exception as e: logger.error(f"Error fetching notifications: {e}") raise HTTPException(status_code=500, detail="Failed to retrieve notifications") @router.post("/notifications/{notification_id}/read") async def mark_notification_as_read( notification_id: str = Path(..., description="The ID of the notification to mark as read"), current_user: dict = Depends(get_current_user) ): logger.info(f"Marking notification {notification_id} as read for {current_user['email']}") try: result = await notifications_collection.update_one( {"_id": ObjectId(notification_id), "user_id": current_user["email"]}, {"$set": {"read": True}} ) if result.matched_count == 0: raise HTTPException(status_code=404, detail="Notification not found or not authorized") return {"status": "success", "message": "Notification marked as read"} except InvalidId: raise HTTPException(status_code=400, detail="Invalid notification ID format") except Exception as e: logger.error(f"Error marking notification as read: {e}") raise HTTPException(status_code=500, detail="Failed to mark notification as read") @router.post("/notifications/read-all") async def mark_all_notifications_as_read( current_user: dict = Depends(get_current_user) ): logger.info(f"Marking all notifications as read for {current_user['email']}") try: result = await notifications_collection.update_many( {"user_id": current_user["email"], "read": False}, {"$set": {"read": True}} ) if result.matched_count == 0: logger.info("No unread notifications to mark as read") return {"status": "success", "message": f"Marked {result.modified_count} notifications as read"} except Exception as e: logger.error(f"Error marking all notifications as read: {e}") raise HTTPException(status_code=500, detail="Failed to mark all notifications as read") @router.post("/voice/transcribe") async def transcribe_voice( audio: UploadFile = File(...), language: str = Query("en-US", description="Language code for speech recognition"), current_user: dict = Depends(get_current_user) ): logger.info(f"Voice transcription initiated by {current_user['email']}") try: audio_data = await audio.read() if not audio.filename.lower().endswith(('.wav', '.mp3', '.ogg', '.flac')): raise HTTPException(status_code=400, detail="Unsupported audio format") text = recognize_speech(audio_data, language) return {"text": text} except HTTPException: raise except Exception as e: logger.error(f"Error in voice transcription: {e}") raise HTTPException(status_code=500, detail="Error processing voice input") @router.post("/voice/synthesize") async def synthesize_voice( request: VoiceOutputRequest, current_user: dict = Depends(get_current_user) ): logger.info(f"Voice synthesis initiated by {current_user['email']}") try: audio_data = text_to_speech(request.text, request.language, request.slow) if request.return_format == "base64": return {"audio": base64.b64encode(audio_data).decode('utf-8')} else: return StreamingResponse( io.BytesIO(audio_data), media_type="audio/mpeg", headers={"Content-Disposition": "attachment; filename=speech.mp3"} ) except HTTPException: raise except Exception as e: logger.error(f"Error in voice synthesis: {e}") raise HTTPException(status_code=500, detail="Error generating voice output") @router.post("/voice/chat") async def voice_chat_endpoint( audio: UploadFile = File(...), language: str = Query("en-US", description="Language code for speech recognition"), temperature: float = Query(0.7, ge=0.1, le=1.0), max_new_tokens: int = Query(512, ge=50, le=1024), current_user: dict = Depends(get_current_user) ): logger.info(f"Voice chat initiated by {current_user['email']}") try: audio_data = await audio.read() user_message = recognize_speech(audio_data, language) chat_response = agent.chat( message=user_message, history=[], temperature=temperature, max_new_tokens=max_new_tokens ) audio_data = text_to_speech(chat_response, language.split('-')[0]) # Store voice chat in the chats_collection chat_entry = { "user_id": current_user["email"], "patient_id": None, "message": user_message, "response": chat_response, "chat_type": "voice_chat", "timestamp": datetime.utcnow(), "temperature": temperature, "max_new_tokens": max_new_tokens } logger.info(f"Attempting to insert voice chat entry into chats_collection: {chat_entry}") try: result = await chats_collection.insert_one(chat_entry) chat_entry["_id"] = str(result.inserted_id) logger.info(f"Successfully inserted voice chat entry with ID: {chat_entry['_id']}") except Exception as db_error: logger.error(f"Failed to insert voice chat entry into chats_collection: {str(db_error)}") raise HTTPException(status_code=500, detail=f"Failed to store voice chat: {str(db_error)}") return StreamingResponse( io.BytesIO(audio_data), media_type="audio/mpeg", headers={"Content-Disposition": "attachment; filename=response.mp3"} ) except HTTPException: raise except Exception as e: logger.error(f"Error in voice chat: {e}") raise HTTPException(status_code=500, detail="Error processing voice chat") @router.post("/analyze-report") async def analyze_clinical_report( file: UploadFile = File(...), patient_id: Optional[str] = Form(None), temperature: float = Form(0.5), max_new_tokens: int = Form(1024), current_user: dict = Depends(get_current_user) ): logger.info(f"Report analysis initiated by {current_user['email']}") try: content_type = file.content_type allowed_types = [ 'application/pdf', 'text/plain', 'application/vnd.openxmlformats-officedocument.wordprocessingml.document' ] if content_type not in allowed_types: raise HTTPException( status_code=400, detail=f"Unsupported file type: {content_type}. Supported types: PDF, TXT, DOCX" ) file_content = await file.read() if content_type == 'application/pdf': text = extract_text_from_pdf(file_content) elif content_type == 'text/plain': text = file_content.decode('utf-8') elif content_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document': doc = Document(io.BytesIO(file_content)) text = "\n".join([para.text for para in doc.paragraphs]) else: raise HTTPException(status_code=400, detail="Unsupported file type") text = clean_text_response(text) if len(text.strip()) < 50: raise HTTPException( status_code=400, detail="Extracted text is too short (minimum 50 characters required)" ) analysis = await analyze_patient_report( patient_id=patient_id, report_content=text, file_type=content_type, file_content=file_content ) logger.info(f"Analysis result for patient {patient_id}: {analysis}") # Create a notification if suicide risk is detected suicide_risk = analysis.get("suicide_risk", {}) logger.info(f"Suicide risk detected: {suicide_risk}") if suicide_risk.get("level") != "none": notification = { "user_id": current_user["email"], "message": f"Suicide risk alert for patient {patient_id}: {suicide_risk['level'].upper()} (Score: {suicide_risk['score']})", "patient_id": patient_id, "timestamp": datetime.utcnow(), "severity": "high" if suicide_risk["level"] in ["moderate", "severe"] else "medium", "read": False } await notifications_collection.insert_one(notification) logger.info(f"✅ Created notification for suicide risk alert: {notification}") else: logger.warning(f"No suicide risk detected for patient {patient_id}, no notification created") if "_id" in analysis and isinstance(analysis["_id"], ObjectId): analysis["_id"] = str(analysis["_id"]) if "timestamp" in analysis and isinstance(analysis["timestamp"], datetime): analysis["timestamp"] = analysis["timestamp"].isoformat() return JSONResponse(content=jsonable_encoder({ "status": "success", "analysis": analysis, "patient_id": patient_id, "file_type": content_type, "file_size": len(file_content) })) except HTTPException: raise except Exception as e: logger.error(f"Error in report analysis: {str(e)}") raise HTTPException( status_code=500, detail=f"Failed to analyze report: {str(e)}" ) @router.delete("/patients/{patient_id}") async def delete_patient( patient_id: str, current_user: dict = Depends(get_current_user) ): logger.info(f"Patient deletion initiated by {current_user['email']} for patient {patient_id}") try: # Check if the patient exists patient = await patients_collection.find_one({"fhir_id": patient_id}) if not patient: raise HTTPException(status_code=404, detail="Patient not found") # Check if the current user is authorized (e.g., created_by matches or is admin) if patient.get("created_by") != current_user["email"] and not current_user.get("is_admin", False): raise HTTPException(status_code=403, detail="Not authorized to delete this patient") # Delete all analyses and chats associated with this patient await analysis_collection.delete_many({"patient_id": patient_id}) await chats_collection.delete_many({"patient_id": patient_id}) logger.info(f"Deleted analyses and chats for patient {patient_id}") # Delete the patient await patients_collection.delete_one({"fhir_id": patient_id}) logger.info(f"Patient {patient_id} deleted successfully") return {"status": "success", "message": f"Patient {patient_id} and associated analyses/chats deleted"} except HTTPException: raise except Exception as e: logger.error(f"Error deleting patient {patient_id}: {str(e)}") raise HTTPException(status_code=500, detail=f"Failed to delete patient: {str(e)}") return router