import os import sys import json import logging import re import hashlib from datetime import datetime from typing import List, Dict, Optional, Tuple from enum import Enum from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import asyncio from fastapi import Query from bson import ObjectId from txagent.txagent import TxAgent from db.mongo import get_mongo_client # Logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger("TxAgentAPI") # App app = FastAPI(title="TxAgent API", version="2.2.1") # Version for hash-based analysis app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) # Pydantic class ChatRequest(BaseModel): message: str temperature: float = 0.7 max_new_tokens: int = 512 history: Optional[List[Dict]] = None format: Optional[str] = "clean" # Enums class RiskLevel(str, Enum): NONE = "none" LOW = "low" MODERATE = "moderate" HIGH = "high" SEVERE = "severe" # Globals agent = None patients_collection = None analysis_collection = None alerts_collection = None # Helpers def clean_text_response(text: str) -> str: text = re.sub(r'\n\s*\n', '\n\n', text) text = re.sub(r'[ ]+', ' ', text) return text.replace("**", "").replace("__", "").strip() def extract_section(text: str, heading: str) -> str: try: pattern = rf"{re.escape(heading)}:\s*\n(.*?)(?=\n[A-Z][^\n]*:|\Z)" match = re.search(pattern, text, re.DOTALL | re.IGNORECASE) return match.group(1).strip() if match else "" except Exception as e: logger.error(f"Section extraction failed for heading '{heading}': {e}") return "" def structure_medical_response(text: str) -> Dict: """Improved version that handles both markdown and plain text formats""" def extract_improved(text: str, heading: str) -> str: patterns = [ rf"{re.escape(heading)}:\s*\n(.*?)(?=\n\s*\n|\Z)", rf"\*\*{re.escape(heading)}\*\*:\s*\n(.*?)(?=\n\s*\n|\Z)", rf"{re.escape(heading)}[\s\-]+(.*?)(?=\n\s*\n|\Z)", rf"\n{re.escape(heading)}\s*\n(.*?)(?=\n\s*\n|\Z)" ] for pattern in patterns: match = re.search(pattern, text, re.DOTALL | re.IGNORECASE) if match: content = match.group(1).strip() content = re.sub(r'^\s*[\-\*]\s*', '', content, flags=re.MULTILINE) return content return "" text = text.replace('**', '').replace('__', '') return { "summary": extract_improved(text, "Summary of Patient's Medical History") or extract_improved(text, "Summarize the patient's medical history"), "risks": extract_improved(text, "Identify Risks or Red Flags") or extract_improved(text, "Risks or Red Flags"), "missed_issues": extract_improved(text, "Missed Diagnoses or Treatments") or extract_improved(text, "What the doctor might have missed"), "recommendations": extract_improved(text, "Suggest Next Clinical Steps") or extract_improved(text, "Suggested Clinical Actions") } def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]: """Analyze text for suicide risk factors and return assessment""" suicide_keywords = [ 'suicide', 'suicidal', 'kill myself', 'end my life', 'want to die', 'self-harm', 'self harm', 'hopeless', 'no reason to live', 'plan to die' ] # Check for explicit mentions explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()] if not explicit_mentions: return RiskLevel.NONE, 0.0, [] # If found, ask AI for detailed assessment assessment_prompt = ( "Assess the suicide risk level based on this text. " "Consider frequency, specificity, and severity of statements. " "Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", " "\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n" f"Text to assess:\n{text}" ) try: response = agent.chat( message=assessment_prompt, history=[], temperature=0.2, # Lower temp for more deterministic responses max_new_tokens=256 ) # Extract JSON from response json_match = re.search(r'\{.*\}', response, re.DOTALL) if json_match: assessment = json.loads(json_match.group()) return ( RiskLevel(assessment.get("risk_level", "none").lower()), float(assessment.get("risk_score", 0)), assessment.get("factors", []) ) except Exception as e: logger.error(f"Error in suicide risk assessment: {e}") # Fallback if JSON parsing fails risk_score = min(0.1 * len(explicit_mentions), 0.9) # Cap at 0.9 for fallback if risk_score > 0.7: return RiskLevel.HIGH, risk_score, explicit_mentions elif risk_score > 0.4: return RiskLevel.MODERATE, risk_score, explicit_mentions return RiskLevel.LOW, risk_score, explicit_mentions async def create_alert(patient_id: str, risk_data: dict): """Create an alert document in the database""" alert_doc = { "patient_id": patient_id, "type": "suicide_risk", "level": risk_data["level"], "score": risk_data["score"], "factors": risk_data["factors"], "timestamp": datetime.utcnow(), "acknowledged": False } await alerts_collection.insert_one(alert_doc) logger.warning(f"โš ๏ธ Created suicide risk alert for patient {patient_id}") def serialize_patient(patient: dict) -> dict: patient_copy = patient.copy() if "_id" in patient_copy: patient_copy["_id"] = str(patient_copy["_id"]) return patient_copy def compute_patient_data_hash(patient: dict) -> str: """Compute SHA-256 hash of patient data.""" serialized = json.dumps(patient, sort_keys=True) # Sort keys for consistent hashing return hashlib.sha256(serialized.encode()).hexdigest() async def analyze_patient(patient: dict): try: serialized = serialize_patient(patient) patient_id = serialized.get("fhir_id") patient_hash = compute_patient_data_hash(serialized) logger.info(f"๐Ÿงพ Analyzing patient: {patient_id}") # Check if analysis exists and hash matches existing_analysis = await analysis_collection.find_one({"patient_id": patient_id}) if existing_analysis and existing_analysis.get("data_hash") == patient_hash: logger.info(f"โœ… No changes in patient data for {patient_id}, skipping analysis") return # Skip analysis if data hasn't changed # Main clinical analysis doc = json.dumps(serialized, indent=2) message = ( "You are a clinical decision support AI.\n\n" "Given the patient document below:\n" "1. Summarize the patient's medical history.\n" "2. Identify risks or red flags (including mental health and suicide risk).\n" "3. Highlight missed diagnoses or treatments.\n" "4. Suggest next clinical steps.\n" f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}" ) raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024) structured = structure_medical_response(raw) # Suicide risk assessment risk_level, risk_score, risk_factors = detect_suicide_risk(raw) suicide_risk = { "level": risk_level.value, "score": risk_score, "factors": risk_factors } # Store analysis with data hash analysis_doc = { "patient_id": patient_id, "timestamp": datetime.utcnow(), "summary": structured, "suicide_risk": suicide_risk, "raw": raw, "data_hash": patient_hash # Store the hash } await analysis_collection.update_one( {"patient_id": patient_id}, {"$set": analysis_doc}, upsert=True ) # Create alert if risk is above threshold if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]: await create_alert(patient_id, suicide_risk) logger.info(f"โœ… Stored analysis for patient {patient_id}") except Exception as e: logger.error(f"Error analyzing patient: {e}") async def analyze_all_patients(): patients = await patients_collection.find({}).to_list(length=None) for patient in patients: await analyze_patient(patient) await asyncio.sleep(0.1) @app.on_event("startup") async def startup_event(): global agent, patients_collection, analysis_collection, alerts_collection agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", enable_finish=True, enable_rag=False, force_finish=True, enable_checker=True, step_rag_num=4, seed=42 ) agent.chat_prompt = ( "You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations." ) agent.init_model() logger.info("โœ… TxAgent initialized") db = get_mongo_client()["cps_db"] patients_collection = db["patients"] analysis_collection = db["patient_analysis_results"] alerts_collection = db["clinical_alerts"] logger.info("๐Ÿ“ก Connected to MongoDB") asyncio.create_task(analyze_all_patients()) @app.get("/status") async def status(): return { "status": "running", "timestamp": datetime.utcnow().isoformat(), "version": "2.2.1" } @app.get("/patients/analysis-results") async def get_patient_analysis_results(name: Optional[str] = Query(None)): try: query = {} # If a name filter is provided, we search the patients collection first if name: name_regex = re.compile(name, re.IGNORECASE) matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None) patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p] if not patient_ids: return [] query = {"patient_id": {"$in": patient_ids}} # Find analysis results based on patient_ids (or all if no filter) analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100) # Attach full_name to each analysis result enriched_results = [] for analysis in analyses: patient = await patients_collection.find_one({"fhir_id": analysis["patient_id"]}) if patient: analysis["full_name"] = patient.get("full_name", "Unknown") analysis["_id"] = str(analysis["_id"]) enriched_results.append(analysis) return enriched_results except Exception as e: logger.error(f"Error fetching analysis results: {e}") raise HTTPException(status_code=500, detail="Failed to retrieve analysis results") @app.post("/chat-stream") async def chat_stream_endpoint(request: ChatRequest): async def token_stream(): try: conversation = [{"role": "system", "content": agent.chat_prompt}] if request.history: conversation.extend(request.history) conversation.append({"role": "user", "content": request.message}) input_ids = agent.tokenizer.apply_chat_template( conversation, add_generation_prompt=True, return_tensors="pt" ).to(agent.device) output = agent.model.generate( input_ids, do_sample=True, temperature=request.temperature, max_new_tokens=request.max_new_tokens, pad_token_id=agent.tokenizer.eos_token_id, return_dict_in_generate=True ) text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True) for chunk in text.split(): yield chunk + " " await asyncio.sleep(0.05) except Exception as e: logger.error(f"Streaming error: {e}") yield f"โš ๏ธ Error: {e}" return StreamingResponse(token_stream(), media_type="text/plain")