Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +13 -55
src/txagent/txagent.py
CHANGED
@@ -7,7 +7,6 @@ from typing import Dict, Optional, Union
|
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
|
10 |
-
# Configure logging
|
11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
12 |
logger = logging.getLogger("TxAgent")
|
13 |
|
@@ -20,18 +19,7 @@ class TxAgent:
|
|
20 |
enable_checker: bool = True,
|
21 |
step_rag_num: int = 4,
|
22 |
seed: Optional[int] = None):
|
23 |
-
"""
|
24 |
-
Initialize the TxAgent with specified configuration.
|
25 |
-
|
26 |
-
Args:
|
27 |
-
model_name: Name/path of the main LLM model
|
28 |
-
rag_model_name: Name/path of the RAG model
|
29 |
-
tool_files_dict: Dictionary of tool files
|
30 |
-
force_finish: Whether to force finish when max tokens reached
|
31 |
-
enable_checker: Whether to enable reasoning trace checker
|
32 |
-
step_rag_num: Number of RAG tools to retrieve per step
|
33 |
-
seed: Random seed for reproducibility
|
34 |
-
"""
|
35 |
self.model_name = model_name
|
36 |
self.rag_model_name = rag_model_name
|
37 |
self.tool_files_dict = tool_files_dict or {}
|
@@ -48,24 +36,24 @@ class TxAgent:
|
|
48 |
logger.info(f"Initialized TxAgent with model: {model_name} on device: {self.device}")
|
49 |
|
50 |
def init_model(self):
|
51 |
-
"""Initialize
|
52 |
self.load_llm_model()
|
53 |
self.load_rag_model()
|
54 |
logger.info("Model initialization complete")
|
55 |
|
56 |
def load_llm_model(self):
|
57 |
-
"""Load the main LLM model."""
|
58 |
try:
|
59 |
logger.info(f"Loading LLM model: {self.model_name}")
|
60 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
61 |
self.model_name,
|
62 |
-
cache_dir=os.getenv("
|
63 |
)
|
64 |
self.model = AutoModelForCausalLM.from_pretrained(
|
65 |
self.model_name,
|
66 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
67 |
device_map="auto",
|
68 |
-
cache_dir=os.getenv("
|
69 |
)
|
70 |
logger.info(f"LLM model loaded on {self.device}")
|
71 |
except Exception as e:
|
@@ -86,29 +74,16 @@ class TxAgent:
|
|
86 |
raise RuntimeError(f"Failed to load RAG model: {str(e)}")
|
87 |
|
88 |
def process_document(self, file_path: str) -> Dict[str, Union[str, Dict]]:
|
89 |
-
"""
|
90 |
-
Process a medical document and return analysis results.
|
91 |
-
|
92 |
-
Args:
|
93 |
-
file_path: Path to the document file (PDF, CSV, or Excel)
|
94 |
-
|
95 |
-
Returns:
|
96 |
-
Dictionary containing:
|
97 |
-
- status: "success" or "error"
|
98 |
-
- analysis: Detailed analysis results or error message
|
99 |
-
- model: Model used for analysis
|
100 |
-
"""
|
101 |
try:
|
102 |
-
# 1. Extract text from document
|
103 |
text = self.extract_text_from_file(file_path)
|
104 |
if not text:
|
105 |
return {
|
106 |
"status": "error",
|
107 |
-
"message": "Failed to extract text
|
108 |
"model": self.model_name
|
109 |
}
|
110 |
|
111 |
-
# 2. Analyze with LLM
|
112 |
analysis = self.analyze_text(text)
|
113 |
|
114 |
return {
|
@@ -118,23 +93,15 @@ class TxAgent:
|
|
118 |
}
|
119 |
|
120 |
except Exception as e:
|
121 |
-
logger.error(f"Document processing failed: {str(e)}"
|
122 |
return {
|
123 |
"status": "error",
|
124 |
-
"message":
|
125 |
"model": self.model_name
|
126 |
}
|
127 |
|
128 |
def extract_text_from_file(self, file_path: str) -> Optional[str]:
|
129 |
-
"""
|
130 |
-
Extract text from supported file types (PDF, CSV, Excel).
|
131 |
-
|
132 |
-
Args:
|
133 |
-
file_path: Path to the input file
|
134 |
-
|
135 |
-
Returns:
|
136 |
-
Extracted text as string, or None if extraction fails
|
137 |
-
"""
|
138 |
try:
|
139 |
if file_path.endswith('.pdf'):
|
140 |
with pdfplumber.open(file_path) as pdf:
|
@@ -160,18 +127,9 @@ class TxAgent:
|
|
160 |
raise RuntimeError(f"Text extraction failed: {str(e)}")
|
161 |
|
162 |
def analyze_text(self, text: str, max_tokens: int = 1000) -> str:
|
163 |
-
"""
|
164 |
-
Analyze extracted text using the LLM.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
text: Text to analyze
|
168 |
-
max_tokens: Maximum tokens to generate
|
169 |
-
|
170 |
-
Returns:
|
171 |
-
Analysis results as string
|
172 |
-
"""
|
173 |
try:
|
174 |
-
prompt = f"""Analyze this medical document
|
175 |
1. Diagnostic patterns
|
176 |
2. Medication issues
|
177 |
3. Recommended follow-ups
|
@@ -192,7 +150,7 @@ Document:
|
|
192 |
raise RuntimeError(f"Analysis failed: {str(e)}")
|
193 |
|
194 |
def cleanup(self):
|
195 |
-
"""Clean up resources
|
196 |
if hasattr(self, 'model'):
|
197 |
del self.model
|
198 |
if hasattr(self, 'rag_model'):
|
|
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
|
|
|
10 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
11 |
logger = logging.getLogger("TxAgent")
|
12 |
|
|
|
19 |
enable_checker: bool = True,
|
20 |
step_rag_num: int = 4,
|
21 |
seed: Optional[int] = None):
|
22 |
+
"""Initialize TxAgent without vLLM dependencies."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
self.model_name = model_name
|
24 |
self.rag_model_name = rag_model_name
|
25 |
self.tool_files_dict = tool_files_dict or {}
|
|
|
36 |
logger.info(f"Initialized TxAgent with model: {model_name} on device: {self.device}")
|
37 |
|
38 |
def init_model(self):
|
39 |
+
"""Initialize models using transformers only."""
|
40 |
self.load_llm_model()
|
41 |
self.load_rag_model()
|
42 |
logger.info("Model initialization complete")
|
43 |
|
44 |
def load_llm_model(self):
|
45 |
+
"""Load the main LLM model using transformers."""
|
46 |
try:
|
47 |
logger.info(f"Loading LLM model: {self.model_name}")
|
48 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
49 |
self.model_name,
|
50 |
+
cache_dir=os.getenv("HF_HOME")
|
51 |
)
|
52 |
self.model = AutoModelForCausalLM.from_pretrained(
|
53 |
self.model_name,
|
54 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
55 |
device_map="auto",
|
56 |
+
cache_dir=os.getenv("HF_HOME")
|
57 |
)
|
58 |
logger.info(f"LLM model loaded on {self.device}")
|
59 |
except Exception as e:
|
|
|
74 |
raise RuntimeError(f"Failed to load RAG model: {str(e)}")
|
75 |
|
76 |
def process_document(self, file_path: str) -> Dict[str, Union[str, Dict]]:
|
77 |
+
"""Process a document and return real analysis results."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
try:
|
|
|
79 |
text = self.extract_text_from_file(file_path)
|
80 |
if not text:
|
81 |
return {
|
82 |
"status": "error",
|
83 |
+
"message": "Failed to extract text",
|
84 |
"model": self.model_name
|
85 |
}
|
86 |
|
|
|
87 |
analysis = self.analyze_text(text)
|
88 |
|
89 |
return {
|
|
|
93 |
}
|
94 |
|
95 |
except Exception as e:
|
96 |
+
logger.error(f"Document processing failed: {str(e)}")
|
97 |
return {
|
98 |
"status": "error",
|
99 |
+
"message": str(e),
|
100 |
"model": self.model_name
|
101 |
}
|
102 |
|
103 |
def extract_text_from_file(self, file_path: str) -> Optional[str]:
|
104 |
+
"""Extract text from PDF, CSV, or Excel files."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
try:
|
106 |
if file_path.endswith('.pdf'):
|
107 |
with pdfplumber.open(file_path) as pdf:
|
|
|
127 |
raise RuntimeError(f"Text extraction failed: {str(e)}")
|
128 |
|
129 |
def analyze_text(self, text: str, max_tokens: int = 1000) -> str:
|
130 |
+
"""Analyze extracted text using the LLM."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
try:
|
132 |
+
prompt = f"""Analyze this medical document:
|
133 |
1. Diagnostic patterns
|
134 |
2. Medication issues
|
135 |
3. Recommended follow-ups
|
|
|
150 |
raise RuntimeError(f"Analysis failed: {str(e)}")
|
151 |
|
152 |
def cleanup(self):
|
153 |
+
"""Clean up resources."""
|
154 |
if hasattr(self, 'model'):
|
155 |
del self.model
|
156 |
if hasattr(self, 'rag_model'):
|