Spaces:
Runtime error
Runtime error
Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +13 -55
src/txagent/txagent.py
CHANGED
|
@@ -7,7 +7,6 @@ from typing import Dict, Optional, Union
|
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
|
| 10 |
-
# Configure logging
|
| 11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 12 |
logger = logging.getLogger("TxAgent")
|
| 13 |
|
|
@@ -20,18 +19,7 @@ class TxAgent:
|
|
| 20 |
enable_checker: bool = True,
|
| 21 |
step_rag_num: int = 4,
|
| 22 |
seed: Optional[int] = None):
|
| 23 |
-
"""
|
| 24 |
-
Initialize the TxAgent with specified configuration.
|
| 25 |
-
|
| 26 |
-
Args:
|
| 27 |
-
model_name: Name/path of the main LLM model
|
| 28 |
-
rag_model_name: Name/path of the RAG model
|
| 29 |
-
tool_files_dict: Dictionary of tool files
|
| 30 |
-
force_finish: Whether to force finish when max tokens reached
|
| 31 |
-
enable_checker: Whether to enable reasoning trace checker
|
| 32 |
-
step_rag_num: Number of RAG tools to retrieve per step
|
| 33 |
-
seed: Random seed for reproducibility
|
| 34 |
-
"""
|
| 35 |
self.model_name = model_name
|
| 36 |
self.rag_model_name = rag_model_name
|
| 37 |
self.tool_files_dict = tool_files_dict or {}
|
|
@@ -48,24 +36,24 @@ class TxAgent:
|
|
| 48 |
logger.info(f"Initialized TxAgent with model: {model_name} on device: {self.device}")
|
| 49 |
|
| 50 |
def init_model(self):
|
| 51 |
-
"""Initialize
|
| 52 |
self.load_llm_model()
|
| 53 |
self.load_rag_model()
|
| 54 |
logger.info("Model initialization complete")
|
| 55 |
|
| 56 |
def load_llm_model(self):
|
| 57 |
-
"""Load the main LLM model."""
|
| 58 |
try:
|
| 59 |
logger.info(f"Loading LLM model: {self.model_name}")
|
| 60 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 61 |
self.model_name,
|
| 62 |
-
cache_dir=os.getenv("
|
| 63 |
)
|
| 64 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 65 |
self.model_name,
|
| 66 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
| 67 |
device_map="auto",
|
| 68 |
-
cache_dir=os.getenv("
|
| 69 |
)
|
| 70 |
logger.info(f"LLM model loaded on {self.device}")
|
| 71 |
except Exception as e:
|
|
@@ -86,29 +74,16 @@ class TxAgent:
|
|
| 86 |
raise RuntimeError(f"Failed to load RAG model: {str(e)}")
|
| 87 |
|
| 88 |
def process_document(self, file_path: str) -> Dict[str, Union[str, Dict]]:
|
| 89 |
-
"""
|
| 90 |
-
Process a medical document and return analysis results.
|
| 91 |
-
|
| 92 |
-
Args:
|
| 93 |
-
file_path: Path to the document file (PDF, CSV, or Excel)
|
| 94 |
-
|
| 95 |
-
Returns:
|
| 96 |
-
Dictionary containing:
|
| 97 |
-
- status: "success" or "error"
|
| 98 |
-
- analysis: Detailed analysis results or error message
|
| 99 |
-
- model: Model used for analysis
|
| 100 |
-
"""
|
| 101 |
try:
|
| 102 |
-
# 1. Extract text from document
|
| 103 |
text = self.extract_text_from_file(file_path)
|
| 104 |
if not text:
|
| 105 |
return {
|
| 106 |
"status": "error",
|
| 107 |
-
"message": "Failed to extract text
|
| 108 |
"model": self.model_name
|
| 109 |
}
|
| 110 |
|
| 111 |
-
# 2. Analyze with LLM
|
| 112 |
analysis = self.analyze_text(text)
|
| 113 |
|
| 114 |
return {
|
|
@@ -118,23 +93,15 @@ class TxAgent:
|
|
| 118 |
}
|
| 119 |
|
| 120 |
except Exception as e:
|
| 121 |
-
logger.error(f"Document processing failed: {str(e)}"
|
| 122 |
return {
|
| 123 |
"status": "error",
|
| 124 |
-
"message":
|
| 125 |
"model": self.model_name
|
| 126 |
}
|
| 127 |
|
| 128 |
def extract_text_from_file(self, file_path: str) -> Optional[str]:
|
| 129 |
-
"""
|
| 130 |
-
Extract text from supported file types (PDF, CSV, Excel).
|
| 131 |
-
|
| 132 |
-
Args:
|
| 133 |
-
file_path: Path to the input file
|
| 134 |
-
|
| 135 |
-
Returns:
|
| 136 |
-
Extracted text as string, or None if extraction fails
|
| 137 |
-
"""
|
| 138 |
try:
|
| 139 |
if file_path.endswith('.pdf'):
|
| 140 |
with pdfplumber.open(file_path) as pdf:
|
|
@@ -160,18 +127,9 @@ class TxAgent:
|
|
| 160 |
raise RuntimeError(f"Text extraction failed: {str(e)}")
|
| 161 |
|
| 162 |
def analyze_text(self, text: str, max_tokens: int = 1000) -> str:
|
| 163 |
-
"""
|
| 164 |
-
Analyze extracted text using the LLM.
|
| 165 |
-
|
| 166 |
-
Args:
|
| 167 |
-
text: Text to analyze
|
| 168 |
-
max_tokens: Maximum tokens to generate
|
| 169 |
-
|
| 170 |
-
Returns:
|
| 171 |
-
Analysis results as string
|
| 172 |
-
"""
|
| 173 |
try:
|
| 174 |
-
prompt = f"""Analyze this medical document
|
| 175 |
1. Diagnostic patterns
|
| 176 |
2. Medication issues
|
| 177 |
3. Recommended follow-ups
|
|
@@ -192,7 +150,7 @@ Document:
|
|
| 192 |
raise RuntimeError(f"Analysis failed: {str(e)}")
|
| 193 |
|
| 194 |
def cleanup(self):
|
| 195 |
-
"""Clean up resources
|
| 196 |
if hasattr(self, 'model'):
|
| 197 |
del self.model
|
| 198 |
if hasattr(self, 'rag_model'):
|
|
|
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
|
|
|
|
| 10 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 11 |
logger = logging.getLogger("TxAgent")
|
| 12 |
|
|
|
|
| 19 |
enable_checker: bool = True,
|
| 20 |
step_rag_num: int = 4,
|
| 21 |
seed: Optional[int] = None):
|
| 22 |
+
"""Initialize TxAgent without vLLM dependencies."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
self.model_name = model_name
|
| 24 |
self.rag_model_name = rag_model_name
|
| 25 |
self.tool_files_dict = tool_files_dict or {}
|
|
|
|
| 36 |
logger.info(f"Initialized TxAgent with model: {model_name} on device: {self.device}")
|
| 37 |
|
| 38 |
def init_model(self):
|
| 39 |
+
"""Initialize models using transformers only."""
|
| 40 |
self.load_llm_model()
|
| 41 |
self.load_rag_model()
|
| 42 |
logger.info("Model initialization complete")
|
| 43 |
|
| 44 |
def load_llm_model(self):
|
| 45 |
+
"""Load the main LLM model using transformers."""
|
| 46 |
try:
|
| 47 |
logger.info(f"Loading LLM model: {self.model_name}")
|
| 48 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 49 |
self.model_name,
|
| 50 |
+
cache_dir=os.getenv("HF_HOME")
|
| 51 |
)
|
| 52 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
self.model_name,
|
| 54 |
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
|
| 55 |
device_map="auto",
|
| 56 |
+
cache_dir=os.getenv("HF_HOME")
|
| 57 |
)
|
| 58 |
logger.info(f"LLM model loaded on {self.device}")
|
| 59 |
except Exception as e:
|
|
|
|
| 74 |
raise RuntimeError(f"Failed to load RAG model: {str(e)}")
|
| 75 |
|
| 76 |
def process_document(self, file_path: str) -> Dict[str, Union[str, Dict]]:
|
| 77 |
+
"""Process a document and return real analysis results."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
try:
|
|
|
|
| 79 |
text = self.extract_text_from_file(file_path)
|
| 80 |
if not text:
|
| 81 |
return {
|
| 82 |
"status": "error",
|
| 83 |
+
"message": "Failed to extract text",
|
| 84 |
"model": self.model_name
|
| 85 |
}
|
| 86 |
|
|
|
|
| 87 |
analysis = self.analyze_text(text)
|
| 88 |
|
| 89 |
return {
|
|
|
|
| 93 |
}
|
| 94 |
|
| 95 |
except Exception as e:
|
| 96 |
+
logger.error(f"Document processing failed: {str(e)}")
|
| 97 |
return {
|
| 98 |
"status": "error",
|
| 99 |
+
"message": str(e),
|
| 100 |
"model": self.model_name
|
| 101 |
}
|
| 102 |
|
| 103 |
def extract_text_from_file(self, file_path: str) -> Optional[str]:
|
| 104 |
+
"""Extract text from PDF, CSV, or Excel files."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
try:
|
| 106 |
if file_path.endswith('.pdf'):
|
| 107 |
with pdfplumber.open(file_path) as pdf:
|
|
|
|
| 127 |
raise RuntimeError(f"Text extraction failed: {str(e)}")
|
| 128 |
|
| 129 |
def analyze_text(self, text: str, max_tokens: int = 1000) -> str:
|
| 130 |
+
"""Analyze extracted text using the LLM."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
try:
|
| 132 |
+
prompt = f"""Analyze this medical document:
|
| 133 |
1. Diagnostic patterns
|
| 134 |
2. Medication issues
|
| 135 |
3. Recommended follow-ups
|
|
|
|
| 150 |
raise RuntimeError(f"Analysis failed: {str(e)}")
|
| 151 |
|
| 152 |
def cleanup(self):
|
| 153 |
+
"""Clean up resources."""
|
| 154 |
if hasattr(self, 'model'):
|
| 155 |
del self.model
|
| 156 |
if hasattr(self, 'rag_model'):
|