Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,13 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
| 3 |
-
import sys
|
| 4 |
-
import json
|
| 5 |
-
import logging
|
| 6 |
-
import re
|
| 7 |
-
import hashlib
|
| 8 |
-
import io
|
| 9 |
-
import base64
|
| 10 |
-
from datetime import datetime
|
| 11 |
-
from typing import List, Dict, Optional, Tuple
|
| 12 |
-
from enum import Enum
|
| 13 |
-
from fastapi import FastAPI, HTTPException, UploadFile, File, Query, Form, Depends
|
| 14 |
-
from fastapi.responses import StreamingResponse, JSONResponse
|
| 15 |
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
-
from
|
| 17 |
-
from
|
| 18 |
-
from pydantic import BaseModel
|
| 19 |
-
import asyncio
|
| 20 |
-
from bson import ObjectId
|
| 21 |
-
import speech_recognition as sr
|
| 22 |
-
from gtts import gTTS
|
| 23 |
-
from pydub import AudioSegment
|
| 24 |
-
import PyPDF2
|
| 25 |
-
import mimetypes
|
| 26 |
-
from docx import Document
|
| 27 |
-
from jose import JWTError, jwt
|
| 28 |
-
from txagent.txagent import TxAgent
|
| 29 |
-
from db.mongo import get_mongo_client
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 33 |
-
logger = logging.getLogger("TxAgentAPI")
|
| 34 |
-
|
| 35 |
-
# App
|
| 36 |
app = FastAPI(title="TxAgent API", version="2.6.0")
|
| 37 |
|
| 38 |
-
# CORS
|
| 39 |
app.add_middleware(
|
| 40 |
CORSMiddleware,
|
| 41 |
allow_origins=["*"],
|
|
@@ -44,595 +16,11 @@ app.add_middleware(
|
|
| 44 |
allow_headers=["*"]
|
| 45 |
)
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
|
| 49 |
-
ALGORITHM = "HS256"
|
| 50 |
-
|
| 51 |
-
# OAuth2 scheme (point to CPS-API's login endpoint)
|
| 52 |
-
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="https://rocketfarmstudios-cps-api.hf.space/auth/login")
|
| 53 |
-
|
| 54 |
-
# Pydantic Models
|
| 55 |
-
class ChatRequest(BaseModel):
|
| 56 |
-
message: str
|
| 57 |
-
temperature: float = 0.7
|
| 58 |
-
max_new_tokens: int = 512
|
| 59 |
-
history: Optional[List[Dict]] = None
|
| 60 |
-
format: Optional[str] = "clean"
|
| 61 |
-
|
| 62 |
-
class VoiceInputRequest(BaseModel):
|
| 63 |
-
audio_format: str = "wav"
|
| 64 |
-
language: str = "en-US"
|
| 65 |
-
|
| 66 |
-
class VoiceOutputRequest(BaseModel):
|
| 67 |
-
text: str
|
| 68 |
-
language: str = "en"
|
| 69 |
-
slow: bool = False
|
| 70 |
-
return_format: str = "mp3"
|
| 71 |
-
|
| 72 |
-
# Enums
|
| 73 |
-
class RiskLevel(str, Enum):
|
| 74 |
-
NONE = "none"
|
| 75 |
-
LOW = "low"
|
| 76 |
-
MODERATE = "moderate"
|
| 77 |
-
HIGH = "high"
|
| 78 |
-
SEVERE = "severe"
|
| 79 |
-
|
| 80 |
-
# Globals
|
| 81 |
-
agent = None
|
| 82 |
-
patients_collection = None
|
| 83 |
-
analysis_collection = None
|
| 84 |
-
alerts_collection = None
|
| 85 |
-
|
| 86 |
-
# JWT validation
|
| 87 |
-
async def get_current_user(token: str = Depends(oauth2_scheme)):
|
| 88 |
-
credentials_exception = HTTPException(
|
| 89 |
-
status_code=401,
|
| 90 |
-
detail="Could not validate credentials",
|
| 91 |
-
headers={"WWW-Authenticate": "Bearer"},
|
| 92 |
-
)
|
| 93 |
-
try:
|
| 94 |
-
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
|
| 95 |
-
email: str = payload.get("sub")
|
| 96 |
-
if email is None:
|
| 97 |
-
raise credentials_exception
|
| 98 |
-
except JWTError:
|
| 99 |
-
raise credentials_exception
|
| 100 |
-
user = await users_collection.find_one({"email": email})
|
| 101 |
-
if user is None:
|
| 102 |
-
raise credentials_exception
|
| 103 |
-
return user
|
| 104 |
-
|
| 105 |
-
# Helper functions (unchanged from your original code)
|
| 106 |
-
def clean_text_response(text: str) -> str:
|
| 107 |
-
text = re.sub(r'\n\s*\n', '\n\n', text)
|
| 108 |
-
text = re.sub(r'[ ]+', ' ', text)
|
| 109 |
-
return text.replace("**", "").replace("__", "").strip()
|
| 110 |
-
|
| 111 |
-
def extract_section(text: str, heading: str) -> str:
|
| 112 |
-
try:
|
| 113 |
-
pattern = rf"{re.escape(heading)}:\s*\n(.*?)(?=\n[A-Z][^\n]*:|\Z)"
|
| 114 |
-
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
|
| 115 |
-
return match.group(1).strip() if match else ""
|
| 116 |
-
except Exception as e:
|
| 117 |
-
logger.error(f"Section extraction failed for heading '{heading}': {e}")
|
| 118 |
-
return ""
|
| 119 |
-
|
| 120 |
-
def structure_medical_response(text: str) -> Dict:
|
| 121 |
-
def extract_improved(text: str, heading: str) -> str:
|
| 122 |
-
patterns = [
|
| 123 |
-
rf"{re.escape(heading)}:\s*\n(.*?)(?=\n\s*\n|\Z)",
|
| 124 |
-
rf"\*\*{re.escape(heading)}\*\*:\s*\n(.*?)(?=\n\s*\n|\Z)",
|
| 125 |
-
rf"{re.escape(heading)}[\s\-]+(.*?)(?=\n\s*\n|\Z)",
|
| 126 |
-
rf"\n{re.escape(heading)}\s*\n(.*?)(?=\n\s*\n|\Z)"
|
| 127 |
-
]
|
| 128 |
-
for pattern in patterns:
|
| 129 |
-
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
|
| 130 |
-
if match:
|
| 131 |
-
content = match.group(1).strip()
|
| 132 |
-
content = re.sub(r'^\s*[\-\*]\s*', '', content, flags=re.MULTILINE)
|
| 133 |
-
return content
|
| 134 |
-
return ""
|
| 135 |
-
|
| 136 |
-
text = text.replace('**', '').replace('__', '')
|
| 137 |
-
return {
|
| 138 |
-
"summary": extract_improved(text, "Summary of Patient's Medical History") or
|
| 139 |
-
extract_improved(text, "Summarize the patient's medical history"),
|
| 140 |
-
"risks": extract_improved(text, "Identify Risks or Red Flags") or
|
| 141 |
-
extract_improved(text, "Risks or Red Flags"),
|
| 142 |
-
"missed_issues": extract_improved(text, "Missed Diagnoses or Treatments") or
|
| 143 |
-
extract_improved(text, "What the doctor might have missed"),
|
| 144 |
-
"recommendations": extract_improved(text, "Suggest Next Clinical Steps") or
|
| 145 |
-
extract_improved(text, "Suggested Clinical Actions")
|
| 146 |
-
}
|
| 147 |
-
|
| 148 |
-
def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]:
|
| 149 |
-
suicide_keywords = [
|
| 150 |
-
'suicide', 'suicidal', 'kill myself', 'end my life',
|
| 151 |
-
'want to die', 'self-harm', 'self harm', 'hopeless',
|
| 152 |
-
'no reason to live', 'plan to die'
|
| 153 |
-
]
|
| 154 |
-
explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()]
|
| 155 |
-
if not explicit_mentions:
|
| 156 |
-
return RiskLevel.NONE, 0.0, []
|
| 157 |
-
|
| 158 |
-
assessment_prompt = (
|
| 159 |
-
"Assess the suicide risk level based on this text. "
|
| 160 |
-
"Consider frequency, specificity, and severity of statements. "
|
| 161 |
-
"Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", "
|
| 162 |
-
"\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n"
|
| 163 |
-
f"Text to assess:\n{text}"
|
| 164 |
-
)
|
| 165 |
-
|
| 166 |
-
try:
|
| 167 |
-
response = agent.chat(
|
| 168 |
-
message=assessment_prompt,
|
| 169 |
-
history=[],
|
| 170 |
-
temperature=0.2,
|
| 171 |
-
max_new_tokens=256
|
| 172 |
-
)
|
| 173 |
-
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
| 174 |
-
if json_match:
|
| 175 |
-
assessment = json.loads(json_match.group())
|
| 176 |
-
return (
|
| 177 |
-
RiskLevel(assessment.get("risk_level", "none").lower()),
|
| 178 |
-
float(assessment.get("risk_score", 0)),
|
| 179 |
-
assessment.get("factors", [])
|
| 180 |
-
)
|
| 181 |
-
except Exception as e:
|
| 182 |
-
logger.error(f"Error in suicide risk assessment: {e}")
|
| 183 |
-
|
| 184 |
-
risk_score = min(0.1 * len(explicit_mentions), 0.9)
|
| 185 |
-
if risk_score > 0.7:
|
| 186 |
-
return RiskLevel.HIGH, risk_score, explicit_mentions
|
| 187 |
-
elif risk_score > 0.4:
|
| 188 |
-
return RiskLevel.MODERATE, risk_score, explicit_mentions
|
| 189 |
-
return RiskLevel.LOW, risk_score, explicit_mentions
|
| 190 |
-
|
| 191 |
-
async def create_alert(patient_id: str, risk_data: dict):
|
| 192 |
-
alert_doc = {
|
| 193 |
-
"patient_id": patient_id,
|
| 194 |
-
"type": "suicide_risk",
|
| 195 |
-
"level": risk_data["level"],
|
| 196 |
-
"score": risk_data["score"],
|
| 197 |
-
"factors": risk_data["factors"],
|
| 198 |
-
"timestamp": datetime.utcnow(),
|
| 199 |
-
"acknowledged": False
|
| 200 |
-
}
|
| 201 |
-
await alerts_collection.insert_one(alert_doc)
|
| 202 |
-
logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}")
|
| 203 |
-
|
| 204 |
-
def serialize_patient(patient: dict) -> dict:
|
| 205 |
-
patient_copy = patient.copy()
|
| 206 |
-
if "_id" in patient_copy:
|
| 207 |
-
patient_copy["_id"] = str(patient_copy["_id"])
|
| 208 |
-
return patient_copy
|
| 209 |
-
|
| 210 |
-
def compute_patient_data_hash(data: dict) -> str:
|
| 211 |
-
serialized = json.dumps(data, sort_keys=True)
|
| 212 |
-
return hashlib.sha256(serialized.encode()).hexdigest()
|
| 213 |
-
|
| 214 |
-
def compute_file_content_hash(file_content: bytes) -> str:
|
| 215 |
-
return hashlib.sha256(file_content).hexdigest()
|
| 216 |
-
|
| 217 |
-
def extract_text_from_pdf(pdf_data: bytes) -> str:
|
| 218 |
-
try:
|
| 219 |
-
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data))
|
| 220 |
-
text = ""
|
| 221 |
-
for page in pdf_reader.pages:
|
| 222 |
-
text += page.extract_text() or ""
|
| 223 |
-
return clean_text_response(text)
|
| 224 |
-
except Exception as e:
|
| 225 |
-
logger.error(f"Error extracting text from PDF: {e}")
|
| 226 |
-
raise HTTPException(status_code=400, detail="Failed to extract text from PDF")
|
| 227 |
-
|
| 228 |
-
async def analyze_patient_report(patient_id: Optional[str], report_content: str, file_type: str, file_content: bytes):
|
| 229 |
-
identifier = patient_id if patient_id else compute_file_content_hash(file_content)
|
| 230 |
-
report_data = {"identifier": identifier, "content": report_content, "file_type": file_type}
|
| 231 |
-
report_hash = compute_patient_data_hash(report_data)
|
| 232 |
-
logger.info(f"🧾 Analyzing report for identifier: {identifier}")
|
| 233 |
-
|
| 234 |
-
existing_analysis = await analysis_collection.find_one({"identifier": identifier, "report_hash": report_hash})
|
| 235 |
-
if existing_analysis:
|
| 236 |
-
logger.info(f"✅ No changes in report data for {identifier}, skipping analysis")
|
| 237 |
-
return existing_analysis
|
| 238 |
-
|
| 239 |
-
prompt = (
|
| 240 |
-
"You are a clinical decision support AI. Analyze the following patient report:\n"
|
| 241 |
-
"1. Summarize the patient's medical history.\n"
|
| 242 |
-
"2. Identify risks or red flags (including mental health and suicide risk).\n"
|
| 243 |
-
"3. Highlight missed diagnoses or treatments.\n"
|
| 244 |
-
"4. Suggest next clinical steps.\n"
|
| 245 |
-
f"\nPatient Report ({file_type}):\n{'-'*40}\n{report_content[:10000]}"
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
raw_response = agent.chat(
|
| 249 |
-
message=prompt,
|
| 250 |
-
history=[],
|
| 251 |
-
temperature=0.7,
|
| 252 |
-
max_new_tokens=1024
|
| 253 |
-
)
|
| 254 |
-
structured_response = structure_medical_response(raw_response)
|
| 255 |
-
|
| 256 |
-
risk_level, risk_score, risk_factors = detect_suicide_risk(raw_response)
|
| 257 |
-
suicide_risk = {
|
| 258 |
-
"level": risk_level.value,
|
| 259 |
-
"score": risk_score,
|
| 260 |
-
"factors": risk_factors
|
| 261 |
-
}
|
| 262 |
-
|
| 263 |
-
analysis_doc = {
|
| 264 |
-
"identifier": identifier,
|
| 265 |
-
"patient_id": patient_id,
|
| 266 |
-
"timestamp": datetime.utcnow(),
|
| 267 |
-
"summary": structured_response,
|
| 268 |
-
"suicide_risk": suicide_risk,
|
| 269 |
-
"raw": raw_response,
|
| 270 |
-
"report_hash": report_hash,
|
| 271 |
-
"file_type": file_type
|
| 272 |
-
}
|
| 273 |
-
|
| 274 |
-
await analysis_collection.update_one(
|
| 275 |
-
{"identifier": identifier, "report_hash": report_hash},
|
| 276 |
-
{"$set": analysis_doc},
|
| 277 |
-
upsert=True
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
if patient_id and risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
|
| 281 |
-
await create_alert(patient_id, suicide_risk)
|
| 282 |
-
|
| 283 |
-
logger.info(f"✅ Stored analysis for identifier {identifier}")
|
| 284 |
-
return analysis_doc
|
| 285 |
-
|
| 286 |
-
async def analyze_all_patients():
|
| 287 |
-
patients = await patients_collection.find({}).to_list(length=None)
|
| 288 |
-
for patient in patients:
|
| 289 |
-
await analyze_patient(patient)
|
| 290 |
-
await asyncio.sleep(0.1)
|
| 291 |
-
|
| 292 |
-
async def analyze_patient(patient: dict):
|
| 293 |
-
try:
|
| 294 |
-
serialized = serialize_patient(patient)
|
| 295 |
-
patient_id = serialized.get("fhir_id")
|
| 296 |
-
patient_hash = compute_patient_data_hash(serialized)
|
| 297 |
-
logger.info(f"🧾 Analyzing patient: {patient_id}")
|
| 298 |
-
|
| 299 |
-
existing_analysis = await analysis_collection.find_one({"patient_id": patient_id})
|
| 300 |
-
if existing_analysis and existing_analysis.get("data_hash") == patient_hash:
|
| 301 |
-
logger.info(f"✅ No changes in patient data for {patient_id}, skipping analysis")
|
| 302 |
-
return
|
| 303 |
-
|
| 304 |
-
doc = json.dumps(serialized, indent=2)
|
| 305 |
-
message = (
|
| 306 |
-
"You are a clinical decision support AI.\n\n"
|
| 307 |
-
"Given the patient document below:\n"
|
| 308 |
-
"1. Summarize the patient's medical history.\n"
|
| 309 |
-
"2. Identify risks or red flags (including mental health and suicide risk).\n"
|
| 310 |
-
"3. Highlight missed diagnoses or treatments.\n"
|
| 311 |
-
"4. Suggest next clinical steps.\n"
|
| 312 |
-
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
|
| 313 |
-
)
|
| 314 |
-
|
| 315 |
-
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
|
| 316 |
-
structured = structure_medical_response(raw)
|
| 317 |
-
|
| 318 |
-
risk_level, risk_score, risk_factors = detect_suicide_risk(raw)
|
| 319 |
-
suicide_risk = {
|
| 320 |
-
"level": risk_level.value,
|
| 321 |
-
"score": risk_score,
|
| 322 |
-
"factors": risk_factors
|
| 323 |
-
}
|
| 324 |
-
|
| 325 |
-
analysis_doc = {
|
| 326 |
-
"identifier": patient_id,
|
| 327 |
-
"patient_id": patient_id,
|
| 328 |
-
"timestamp": datetime.utcnow(),
|
| 329 |
-
"summary": structured,
|
| 330 |
-
"suicide_risk": suicide_risk,
|
| 331 |
-
"raw": raw,
|
| 332 |
-
"data_hash": patient_hash
|
| 333 |
-
}
|
| 334 |
-
|
| 335 |
-
await analysis_collection.update_one(
|
| 336 |
-
{"identifier": patient_id},
|
| 337 |
-
{"$set": analysis_doc},
|
| 338 |
-
upsert=True
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]:
|
| 342 |
-
await create_alert(patient_id, suicide_risk)
|
| 343 |
-
|
| 344 |
-
logger.info(f"✅ Stored analysis for patient {patient_id}")
|
| 345 |
-
|
| 346 |
-
except Exception as e:
|
| 347 |
-
logger.error(f"Error analyzing patient: {e}")
|
| 348 |
-
|
| 349 |
-
def recognize_speech(audio_data: bytes, language: str = "en-US") -> str:
|
| 350 |
-
recognizer = sr.Recognizer()
|
| 351 |
-
try:
|
| 352 |
-
with io.BytesIO(audio_data) as audio_file:
|
| 353 |
-
with sr.AudioFile(audio_file) as source:
|
| 354 |
-
audio = recognizer.record(source)
|
| 355 |
-
text = recognizer.recognize_google(audio, language=language)
|
| 356 |
-
return text
|
| 357 |
-
except sr.UnknownValueError:
|
| 358 |
-
logger.error("Google Speech Recognition could not understand audio")
|
| 359 |
-
raise HTTPException(status_code=400, detail="Could not understand audio")
|
| 360 |
-
except sr.RequestError as e:
|
| 361 |
-
logger.error(f"Could not request results from Google Speech Recognition service; {e}")
|
| 362 |
-
raise HTTPException(status_code=503, detail="Speech recognition service unavailable")
|
| 363 |
-
except Exception as e:
|
| 364 |
-
logger.error(f"Error in speech recognition: {e}")
|
| 365 |
-
raise HTTPException(status_code=500, detail="Error processing speech")
|
| 366 |
-
|
| 367 |
-
def text_to_speech(text: str, language: str = "en", slow: bool = False) -> bytes:
|
| 368 |
-
try:
|
| 369 |
-
tts = gTTS(text=text, lang=language, slow=slow)
|
| 370 |
-
mp3_fp = io.BytesIO()
|
| 371 |
-
tts.write_to_fp(mp3_fp)
|
| 372 |
-
mp3_fp.seek(0)
|
| 373 |
-
return mp3_fp.read()
|
| 374 |
-
except Exception as e:
|
| 375 |
-
logger.error(f"Error in text-to-speech conversion: {e}")
|
| 376 |
-
raise HTTPException(status_code=500, detail="Error generating speech")
|
| 377 |
-
|
| 378 |
-
@app.on_event("startup")
|
| 379 |
-
async def startup_event():
|
| 380 |
-
global agent, patients_collection, analysis_collection, alerts_collection
|
| 381 |
-
|
| 382 |
-
agent = TxAgent(
|
| 383 |
-
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
| 384 |
-
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
| 385 |
-
enable_finish=True,
|
| 386 |
-
enable_rag=False,
|
| 387 |
-
force_finish=True,
|
| 388 |
-
enable_checker=True,
|
| 389 |
-
step_rag_num=4,
|
| 390 |
-
seed=42
|
| 391 |
-
)
|
| 392 |
-
agent.chat_prompt = (
|
| 393 |
-
"You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations."
|
| 394 |
-
)
|
| 395 |
-
agent.init_model()
|
| 396 |
-
logger.info("✅ TxAgent initialized")
|
| 397 |
-
|
| 398 |
-
db = get_mongo_client()["cps_db"]
|
| 399 |
-
global users_collection # Add this to access users_collection for authentication
|
| 400 |
-
users_collection = db["users"]
|
| 401 |
-
patients_collection = db["patients"]
|
| 402 |
-
analysis_collection = db["patient_analysis_results"]
|
| 403 |
-
alerts_collection = db["clinical_alerts"]
|
| 404 |
-
logger.info("📡 Connected to MongoDB")
|
| 405 |
-
|
| 406 |
-
asyncio.create_task(analyze_all_patients())
|
| 407 |
-
|
| 408 |
-
# Protected Endpoints (add Depends(get_current_user) to all endpoints)
|
| 409 |
-
@app.get("/status")
|
| 410 |
-
async def status(current_user: dict = Depends(get_current_user)):
|
| 411 |
-
logger.info(f"Status endpoint accessed by {current_user['email']}")
|
| 412 |
-
return {
|
| 413 |
-
"status": "running",
|
| 414 |
-
"timestamp": datetime.utcnow().isoformat(),
|
| 415 |
-
"version": "2.6.0",
|
| 416 |
-
"features": ["chat", "voice-input", "voice-output", "patient-analysis", "report-upload"]
|
| 417 |
-
}
|
| 418 |
-
|
| 419 |
-
@app.get("/patients/analysis-results")
|
| 420 |
-
async def get_patient_analysis_results(
|
| 421 |
-
name: Optional[str] = Query(None),
|
| 422 |
-
current_user: dict = Depends(get_current_user)
|
| 423 |
-
):
|
| 424 |
-
logger.info(f"Fetching analysis results by {current_user['email']}")
|
| 425 |
-
try:
|
| 426 |
-
query = {}
|
| 427 |
-
if name:
|
| 428 |
-
name_regex = re.compile(name, re.IGNORECASE)
|
| 429 |
-
matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None)
|
| 430 |
-
patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p]
|
| 431 |
-
if not patient_ids:
|
| 432 |
-
return []
|
| 433 |
-
query = {"patient_id": {"$in": patient_ids}}
|
| 434 |
-
|
| 435 |
-
analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100)
|
| 436 |
-
enriched_results = []
|
| 437 |
-
for analysis in analyses:
|
| 438 |
-
patient = await patients_collection.find_one({"fhir_id": analysis.get("patient_id")})
|
| 439 |
-
if patient:
|
| 440 |
-
analysis["full_name"] = patient.get("full_name", "Unknown")
|
| 441 |
-
analysis["_id"] = str(analysis["_id"])
|
| 442 |
-
enriched_results.append(analysis)
|
| 443 |
-
|
| 444 |
-
return enriched_results
|
| 445 |
-
|
| 446 |
-
except Exception as e:
|
| 447 |
-
logger.error(f"Error fetching analysis results: {e}")
|
| 448 |
-
raise HTTPException(status_code=500, detail="Failed to retrieve analysis results")
|
| 449 |
-
|
| 450 |
-
@app.post("/chat-stream")
|
| 451 |
-
async def chat_stream_endpoint(
|
| 452 |
-
request: ChatRequest,
|
| 453 |
-
current_user: dict = Depends(get_current_user)
|
| 454 |
-
):
|
| 455 |
-
logger.info(f"Chat stream initiated by {current_user['email']}")
|
| 456 |
-
async def token_stream():
|
| 457 |
-
try:
|
| 458 |
-
conversation = [{"role": "system", "content": agent.chat_prompt}]
|
| 459 |
-
if request.history:
|
| 460 |
-
conversation.extend(request.history)
|
| 461 |
-
conversation.append({"role": "user", "content": request.message})
|
| 462 |
-
|
| 463 |
-
input_ids = agent.tokenizer.apply_chat_template(
|
| 464 |
-
conversation, add_generation_prompt=True, return_tensors="pt"
|
| 465 |
-
).to(agent.device)
|
| 466 |
-
|
| 467 |
-
output = agent.model.generate(
|
| 468 |
-
input_ids,
|
| 469 |
-
do_sample=True,
|
| 470 |
-
temperature=request.temperature,
|
| 471 |
-
max_new_tokens=request.max_new_tokens,
|
| 472 |
-
pad_token_id=agent.tokenizer.eos_token_id,
|
| 473 |
-
return_dict_in_generate=True
|
| 474 |
-
)
|
| 475 |
-
|
| 476 |
-
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 477 |
-
for chunk in text.split():
|
| 478 |
-
yield chunk + " "
|
| 479 |
-
await asyncio.sleep(0.05)
|
| 480 |
-
except Exception as e:
|
| 481 |
-
logger.error(f"Streaming error: {e}")
|
| 482 |
-
yield f"⚠️ Error: {e}"
|
| 483 |
-
|
| 484 |
-
return StreamingResponse(token_stream(), media_type="text/plain")
|
| 485 |
-
|
| 486 |
-
@app.post("/voice/transcribe")
|
| 487 |
-
async def transcribe_voice(
|
| 488 |
-
audio: UploadFile = File(...),
|
| 489 |
-
language: str = Query("en-US", description="Language code for speech recognition"),
|
| 490 |
-
current_user: dict = Depends(get_current_user)
|
| 491 |
-
):
|
| 492 |
-
logger.info(f"Voice transcription initiated by {current_user['email']}")
|
| 493 |
-
try:
|
| 494 |
-
audio_data = await audio.read()
|
| 495 |
-
if not audio.filename.lower().endswith(('.wav', '.mp3', '.ogg', '.flac')):
|
| 496 |
-
raise HTTPException(status_code=400, detail="Unsupported audio format")
|
| 497 |
-
|
| 498 |
-
text = recognize_speech(audio_data, language)
|
| 499 |
-
return {"text": text}
|
| 500 |
-
|
| 501 |
-
except HTTPException:
|
| 502 |
-
raise
|
| 503 |
-
except Exception as e:
|
| 504 |
-
logger.error(f"Error in voice transcription: {e}")
|
| 505 |
-
raise HTTPException(status_code=500, detail="Error processing voice input")
|
| 506 |
-
|
| 507 |
-
@app.post("/voice/synthesize")
|
| 508 |
-
async def synthesize_voice(
|
| 509 |
-
request: VoiceOutputRequest,
|
| 510 |
-
current_user: dict = Depends(get_current_user)
|
| 511 |
-
):
|
| 512 |
-
logger.info(f"Voice synthesis initiated by {current_user['email']}")
|
| 513 |
-
try:
|
| 514 |
-
audio_data = text_to_speech(request.text, request.language, request.slow)
|
| 515 |
-
|
| 516 |
-
if request.return_format == "base64":
|
| 517 |
-
return {"audio": base64.b64encode(audio_data).decode('utf-8')}
|
| 518 |
-
else:
|
| 519 |
-
return StreamingResponse(
|
| 520 |
-
io.BytesIO(audio_data),
|
| 521 |
-
media_type="audio/mpeg",
|
| 522 |
-
headers={"Content-Disposition": "attachment; filename=speech.mp3"}
|
| 523 |
-
)
|
| 524 |
-
|
| 525 |
-
except HTTPException:
|
| 526 |
-
raise
|
| 527 |
-
except Exception as e:
|
| 528 |
-
logger.error(f"Error in voice synthesis: {e}")
|
| 529 |
-
raise HTTPException(status_code=500, detail="Error generating voice output")
|
| 530 |
-
|
| 531 |
-
@app.post("/voice/chat")
|
| 532 |
-
async def voice_chat_endpoint(
|
| 533 |
-
audio: UploadFile = File(...),
|
| 534 |
-
language: str = Query("en-US", description="Language code for speech recognition"),
|
| 535 |
-
temperature: float = Query(0.7, ge=0.1, le=1.0),
|
| 536 |
-
max_new_tokens: int = Query(512, ge=50, le=1024),
|
| 537 |
-
current_user: dict = Depends(get_current_user)
|
| 538 |
-
):
|
| 539 |
-
logger.info(f"Voice chat initiated by {current_user['email']}")
|
| 540 |
-
try:
|
| 541 |
-
audio_data = await audio.read()
|
| 542 |
-
user_message = recognize_speech(audio_data, language)
|
| 543 |
-
|
| 544 |
-
chat_response = agent.chat(
|
| 545 |
-
message=user_message,
|
| 546 |
-
history=[],
|
| 547 |
-
temperature=temperature,
|
| 548 |
-
max_new_tokens=max_new_tokens
|
| 549 |
-
)
|
| 550 |
-
|
| 551 |
-
audio_data = text_to_speech(chat_response, language.split('-')[0])
|
| 552 |
-
|
| 553 |
-
return StreamingResponse(
|
| 554 |
-
io.BytesIO(audio_data),
|
| 555 |
-
media_type="audio/mpeg",
|
| 556 |
-
headers={"Content-Disposition": "attachment; filename=response.mp3"}
|
| 557 |
-
)
|
| 558 |
-
|
| 559 |
-
except HTTPException:
|
| 560 |
-
raise
|
| 561 |
-
except Exception as e:
|
| 562 |
-
logger.error(f"Error in voice chat: {e}")
|
| 563 |
-
raise HTTPException(status_code=500, detail="Error processing voice chat")
|
| 564 |
-
|
| 565 |
-
@app.post("/analyze-report")
|
| 566 |
-
async def analyze_clinical_report(
|
| 567 |
-
file: UploadFile = File(...),
|
| 568 |
-
patient_id: Optional[str] = Form(None),
|
| 569 |
-
temperature: float = Form(0.5),
|
| 570 |
-
max_new_tokens: int = Form(1024),
|
| 571 |
-
current_user: dict = Depends(get_current_user)
|
| 572 |
-
):
|
| 573 |
-
logger.info(f"Report analysis initiated by {current_user['email']}")
|
| 574 |
-
try:
|
| 575 |
-
content_type = file.content_type
|
| 576 |
-
allowed_types = [
|
| 577 |
-
'application/pdf',
|
| 578 |
-
'text/plain',
|
| 579 |
-
'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
|
| 580 |
-
]
|
| 581 |
-
|
| 582 |
-
if content_type not in allowed_types:
|
| 583 |
-
raise HTTPException(
|
| 584 |
-
status_code=400,
|
| 585 |
-
detail=f"Unsupported file type: {content_type}. Supported types: PDF, TXT, DOCX"
|
| 586 |
-
)
|
| 587 |
-
|
| 588 |
-
file_content = await file.read()
|
| 589 |
-
|
| 590 |
-
if content_type == 'application/pdf':
|
| 591 |
-
text = extract_text_from_pdf(file_content)
|
| 592 |
-
elif content_type == 'text/plain':
|
| 593 |
-
text = file_content.decode('utf-8')
|
| 594 |
-
elif content_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
|
| 595 |
-
doc = Document(io.BytesIO(file_content))
|
| 596 |
-
text = "\n".join([para.text for para in doc.paragraphs])
|
| 597 |
-
else:
|
| 598 |
-
raise HTTPException(status_code=400, detail="Unsupported file type")
|
| 599 |
-
|
| 600 |
-
text = clean_text_response(text)
|
| 601 |
-
if len(text.strip()) < 50:
|
| 602 |
-
raise HTTPException(
|
| 603 |
-
status_code=400,
|
| 604 |
-
detail="Extracted text is too short (minimum 50 characters required)"
|
| 605 |
-
)
|
| 606 |
-
|
| 607 |
-
analysis = await analyze_patient_report(
|
| 608 |
-
patient_id=patient_id,
|
| 609 |
-
report_content=text,
|
| 610 |
-
file_type=content_type,
|
| 611 |
-
file_content=file_content
|
| 612 |
-
)
|
| 613 |
-
|
| 614 |
-
if "_id" in analysis and isinstance(analysis["_id"], ObjectId):
|
| 615 |
-
analysis["_id"] = str(analysis["_id"])
|
| 616 |
-
if "timestamp" in analysis and isinstance(analysis["timestamp"], datetime):
|
| 617 |
-
analysis["timestamp"] = analysis["timestamp"].isoformat()
|
| 618 |
-
|
| 619 |
-
return JSONResponse(content=jsonable_encoder({
|
| 620 |
-
"status": "success",
|
| 621 |
-
"analysis": analysis,
|
| 622 |
-
"patient_id": patient_id,
|
| 623 |
-
"file_type": content_type,
|
| 624 |
-
"file_size": len(file_content)
|
| 625 |
-
}))
|
| 626 |
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
except Exception as e:
|
| 630 |
-
logger.error(f"Error in report analysis: {str(e)}")
|
| 631 |
-
raise HTTPException(
|
| 632 |
-
status_code=500,
|
| 633 |
-
detail=f"Failed to analyze report: {str(e)}"
|
| 634 |
-
)
|
| 635 |
|
| 636 |
if __name__ == "__main__":
|
| 637 |
-
import uvicorn
|
| 638 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 1 |
+
import uvicorn
|
| 2 |
+
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
from config import setup_app
|
| 5 |
+
from endpoints import router
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Create the FastAPI app
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
app = FastAPI(title="TxAgent API", version="2.6.0")
|
| 9 |
|
| 10 |
+
# Apply CORS middleware
|
| 11 |
app.add_middleware(
|
| 12 |
CORSMiddleware,
|
| 13 |
allow_origins=["*"],
|
|
|
|
| 16 |
allow_headers=["*"]
|
| 17 |
)
|
| 18 |
|
| 19 |
+
# Include the router with endpoints
|
| 20 |
+
app.include_router(router)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# Setup the app (e.g., initialize globals, startup event)
|
| 23 |
+
setup_app(app)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
if __name__ == "__main__":
|
|
|
|
| 26 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|