Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +117 -22
src/txagent/txagent.py
CHANGED
@@ -1,15 +1,23 @@
|
|
1 |
-
# txagent.py - Core TxAgent class (simplified but maintains key functionality)
|
2 |
import os
|
3 |
import logging
|
4 |
import torch
|
5 |
-
import
|
|
|
6 |
from typing import Dict, Optional, List, Union
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from tooluniverse import ToolUniverse
|
10 |
from .toolrag import ToolRAGModel
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
logger = logging.getLogger("TxAgent")
|
14 |
|
15 |
class TxAgent:
|
@@ -69,10 +77,14 @@ class TxAgent:
|
|
69 |
|
70 |
def init_model(self):
|
71 |
"""Initialize all models and components"""
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
def load_llm_model(self):
|
78 |
"""Load the main LLM model"""
|
@@ -93,7 +105,7 @@ class TxAgent:
|
|
93 |
)
|
94 |
logger.info(f"LLM model loaded on {self.device}")
|
95 |
except Exception as e:
|
96 |
-
logger.error(f"Failed to load LLM model: {str(e)}")
|
97 |
raise
|
98 |
|
99 |
def load_rag_model(self):
|
@@ -103,13 +115,13 @@ class TxAgent:
|
|
103 |
self.rag_model = ToolRAGModel(self.rag_model_name)
|
104 |
logger.info("RAG model loaded successfully")
|
105 |
except Exception as e:
|
106 |
-
logger.error(f"Failed to load RAG model: {str(e)}")
|
107 |
raise
|
108 |
|
109 |
def load_tooluniverse(self):
|
110 |
"""Initialize the ToolUniverse"""
|
111 |
try:
|
112 |
-
logger.info("Loading ToolUniverse")
|
113 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
114 |
self.tooluniverse.load_tools()
|
115 |
|
@@ -120,7 +132,7 @@ class TxAgent:
|
|
120 |
|
121 |
logger.info(f"ToolUniverse loaded with {len(self.special_tools_name)} special tools")
|
122 |
except Exception as e:
|
123 |
-
logger.error(f"Failed to load ToolUniverse: {str(e)}")
|
124 |
raise
|
125 |
|
126 |
def chat(self, message: str, history: Optional[List[Dict]] = None,
|
@@ -164,7 +176,7 @@ class TxAgent:
|
|
164 |
return response.strip()
|
165 |
|
166 |
except Exception as e:
|
167 |
-
logger.error(f"Chat failed: {str(e)}")
|
168 |
raise RuntimeError(f"Chat failed: {str(e)}")
|
169 |
|
170 |
def run_multistep_agent(self, message: str, temperature: float = 0.7,
|
@@ -174,7 +186,9 @@ class TxAgent:
|
|
174 |
conversation = [{"role": "system", "content": self.prompt_multi_step}]
|
175 |
conversation.append({"role": "user", "content": message})
|
176 |
|
177 |
-
for
|
|
|
|
|
178 |
# Generate next step
|
179 |
inputs = self.tokenizer.apply_chat_template(
|
180 |
conversation,
|
@@ -198,24 +212,31 @@ class TxAgent:
|
|
198 |
|
199 |
# Check for final answer
|
200 |
if "[FinalAnswer]" in response:
|
201 |
-
|
|
|
|
|
202 |
|
203 |
# Add to conversation
|
204 |
conversation.append({"role": "assistant", "content": response})
|
|
|
205 |
|
206 |
# If max rounds reached
|
207 |
if self.force_finish:
|
|
|
208 |
return self._force_final_answer(conversation, temperature, max_new_tokens)
|
209 |
|
|
|
210 |
return "Reasoning rounds exceeded limit without reaching a final answer."
|
211 |
|
212 |
except Exception as e:
|
213 |
-
logger.error(f"Multi-step agent failed: {str(e)}")
|
214 |
raise RuntimeError(f"Multi-step agent failed: {str(e)}")
|
215 |
|
216 |
def _force_final_answer(self, conversation: List[Dict], temperature: float, max_new_tokens: int) -> str:
|
217 |
"""Force a final answer when max rounds reached"""
|
218 |
try:
|
|
|
|
|
219 |
# Add instruction to provide final answer
|
220 |
conversation.append({
|
221 |
"role": "user",
|
@@ -244,17 +265,91 @@ class TxAgent:
|
|
244 |
return response.strip()
|
245 |
|
246 |
except Exception as e:
|
247 |
-
logger.error(f"Failed to force final answer: {str(e)}")
|
248 |
return "Failed to generate final answer."
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
def cleanup(self):
|
251 |
"""Clean up resources"""
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
def __del__(self):
|
260 |
"""Destructor to ensure proper cleanup"""
|
|
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
import torch
|
4 |
+
import pdfplumber
|
5 |
+
import pandas as pd
|
6 |
from typing import Dict, Optional, List, Union
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from tooluniverse import ToolUniverse
|
10 |
from .toolrag import ToolRAGModel
|
11 |
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(
|
14 |
+
level=logging.INFO,
|
15 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
16 |
+
handlers=[
|
17 |
+
logging.StreamHandler(),
|
18 |
+
logging.FileHandler('txagent_core.log')
|
19 |
+
]
|
20 |
+
)
|
21 |
logger = logging.getLogger("TxAgent")
|
22 |
|
23 |
class TxAgent:
|
|
|
77 |
|
78 |
def init_model(self):
|
79 |
"""Initialize all models and components"""
|
80 |
+
try:
|
81 |
+
self.load_llm_model()
|
82 |
+
self.load_rag_model()
|
83 |
+
self.load_tooluniverse()
|
84 |
+
logger.info("All models initialized successfully")
|
85 |
+
except Exception as e:
|
86 |
+
logger.error(f"Model initialization failed: {str(e)}", exc_info=True)
|
87 |
+
raise
|
88 |
|
89 |
def load_llm_model(self):
|
90 |
"""Load the main LLM model"""
|
|
|
105 |
)
|
106 |
logger.info(f"LLM model loaded on {self.device}")
|
107 |
except Exception as e:
|
108 |
+
logger.error(f"Failed to load LLM model: {str(e)}", exc_info=True)
|
109 |
raise
|
110 |
|
111 |
def load_rag_model(self):
|
|
|
115 |
self.rag_model = ToolRAGModel(self.rag_model_name)
|
116 |
logger.info("RAG model loaded successfully")
|
117 |
except Exception as e:
|
118 |
+
logger.error(f"Failed to load RAG model: {str(e)}", exc_info=True)
|
119 |
raise
|
120 |
|
121 |
def load_tooluniverse(self):
|
122 |
"""Initialize the ToolUniverse"""
|
123 |
try:
|
124 |
+
logger.info("Loading ToolUniverse with files: %s", self.tool_files_dict)
|
125 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
126 |
self.tooluniverse.load_tools()
|
127 |
|
|
|
132 |
|
133 |
logger.info(f"ToolUniverse loaded with {len(self.special_tools_name)} special tools")
|
134 |
except Exception as e:
|
135 |
+
logger.error(f"Failed to load ToolUniverse: {str(e)}", exc_info=True)
|
136 |
raise
|
137 |
|
138 |
def chat(self, message: str, history: Optional[List[Dict]] = None,
|
|
|
176 |
return response.strip()
|
177 |
|
178 |
except Exception as e:
|
179 |
+
logger.error(f"Chat failed: {str(e)}", exc_info=True)
|
180 |
raise RuntimeError(f"Chat failed: {str(e)}")
|
181 |
|
182 |
def run_multistep_agent(self, message: str, temperature: float = 0.7,
|
|
|
186 |
conversation = [{"role": "system", "content": self.prompt_multi_step}]
|
187 |
conversation.append({"role": "user", "content": message})
|
188 |
|
189 |
+
for round_num in range(1, max_round + 1):
|
190 |
+
logger.info(f"Starting reasoning round {round_num}/{max_round}")
|
191 |
+
|
192 |
# Generate next step
|
193 |
inputs = self.tokenizer.apply_chat_template(
|
194 |
conversation,
|
|
|
212 |
|
213 |
# Check for final answer
|
214 |
if "[FinalAnswer]" in response:
|
215 |
+
final_answer = response.split("[FinalAnswer]")[-1].strip()
|
216 |
+
logger.info(f"Final answer found in round {round_num}")
|
217 |
+
return final_answer
|
218 |
|
219 |
# Add to conversation
|
220 |
conversation.append({"role": "assistant", "content": response})
|
221 |
+
logger.info(f"Round {round_num} completed without final answer")
|
222 |
|
223 |
# If max rounds reached
|
224 |
if self.force_finish:
|
225 |
+
logger.info("Max rounds reached, forcing final answer")
|
226 |
return self._force_final_answer(conversation, temperature, max_new_tokens)
|
227 |
|
228 |
+
logger.warning("Max rounds reached without final answer")
|
229 |
return "Reasoning rounds exceeded limit without reaching a final answer."
|
230 |
|
231 |
except Exception as e:
|
232 |
+
logger.error(f"Multi-step agent failed: {str(e)}", exc_info=True)
|
233 |
raise RuntimeError(f"Multi-step agent failed: {str(e)}")
|
234 |
|
235 |
def _force_final_answer(self, conversation: List[Dict], temperature: float, max_new_tokens: int) -> str:
|
236 |
"""Force a final answer when max rounds reached"""
|
237 |
try:
|
238 |
+
logger.info("Attempting to force final answer")
|
239 |
+
|
240 |
# Add instruction to provide final answer
|
241 |
conversation.append({
|
242 |
"role": "user",
|
|
|
265 |
return response.strip()
|
266 |
|
267 |
except Exception as e:
|
268 |
+
logger.error(f"Failed to force final answer: {str(e)}", exc_info=True)
|
269 |
return "Failed to generate final answer."
|
270 |
|
271 |
+
def extract_text_from_file(self, file_path: str) -> Optional[str]:
|
272 |
+
"""Extract text from PDF, CSV, or Excel files"""
|
273 |
+
try:
|
274 |
+
logger.info(f"Extracting text from file: {file_path}")
|
275 |
+
|
276 |
+
if file_path.endswith('.pdf'):
|
277 |
+
with pdfplumber.open(file_path) as pdf:
|
278 |
+
text = "\n".join(
|
279 |
+
page.extract_text()
|
280 |
+
for page in pdf.pages
|
281 |
+
if page.extract_text()
|
282 |
+
)
|
283 |
+
logger.info(f"Extracted {len(text)} characters from PDF")
|
284 |
+
return text
|
285 |
+
|
286 |
+
elif file_path.endswith('.csv'):
|
287 |
+
df = pd.read_csv(file_path)
|
288 |
+
text = df.to_string()
|
289 |
+
logger.info(f"Extracted {len(text)} characters from CSV")
|
290 |
+
return text
|
291 |
+
|
292 |
+
elif file_path.endswith(('.xlsx', '.xls')):
|
293 |
+
df = pd.read_excel(file_path)
|
294 |
+
text = df.to_string()
|
295 |
+
logger.info(f"Extracted {len(text)} characters from Excel")
|
296 |
+
return text
|
297 |
+
|
298 |
+
logger.warning(f"Unsupported file type: {file_path}")
|
299 |
+
return None
|
300 |
+
|
301 |
+
except Exception as e:
|
302 |
+
logger.error(f"Text extraction failed: {str(e)}", exc_info=True)
|
303 |
+
raise RuntimeError(f"Text extraction failed: {str(e)}")
|
304 |
+
|
305 |
+
def analyze_text(self, text: str, max_tokens: int = 1000) -> str:
|
306 |
+
"""Analyze extracted text using the LLM"""
|
307 |
+
try:
|
308 |
+
logger.info(f"Analyzing text (first 100 chars): {text[:100]}...")
|
309 |
+
|
310 |
+
prompt = f"""Analyze this medical document:
|
311 |
+
1. Diagnostic patterns
|
312 |
+
2. Medication issues
|
313 |
+
3. Recommended follow-ups
|
314 |
+
|
315 |
+
Document:
|
316 |
+
{text[:8000]} # Truncate to avoid token limits
|
317 |
+
"""
|
318 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
319 |
+
|
320 |
+
generation_config = GenerationConfig(
|
321 |
+
max_new_tokens=max_tokens,
|
322 |
+
temperature=0.7,
|
323 |
+
do_sample=True,
|
324 |
+
pad_token_id=self.tokenizer.eos_token_id
|
325 |
+
)
|
326 |
+
|
327 |
+
outputs = self.model.generate(
|
328 |
+
**inputs,
|
329 |
+
generation_config=generation_config
|
330 |
+
)
|
331 |
+
|
332 |
+
analysis = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
333 |
+
logger.info("Text analysis completed successfully")
|
334 |
+
return analysis
|
335 |
+
|
336 |
+
except Exception as e:
|
337 |
+
logger.error(f"Text analysis failed: {str(e)}", exc_info=True)
|
338 |
+
raise RuntimeError(f"Analysis failed: {str(e)}")
|
339 |
+
|
340 |
def cleanup(self):
|
341 |
"""Clean up resources"""
|
342 |
+
try:
|
343 |
+
logger.info("Cleaning up TxAgent resources")
|
344 |
+
if hasattr(self, 'model'):
|
345 |
+
del self.model
|
346 |
+
if hasattr(self, 'rag_model'):
|
347 |
+
del self.rag_model
|
348 |
+
torch.cuda.empty_cache()
|
349 |
+
logger.info("TxAgent resources cleaned up")
|
350 |
+
except Exception as e:
|
351 |
+
logger.error(f"Cleanup failed: {str(e)}", exc_info=True)
|
352 |
+
raise
|
353 |
|
354 |
def __del__(self):
|
355 |
"""Destructor to ensure proper cleanup"""
|