TxAgent-Api / endpoints.py
Ali2206's picture
Update endpoints.py
fc7093b verified
raw
history blame
38.2 kB
from fastapi import APIRouter, Depends, HTTPException, UploadFile, File, Query, Form, Path
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse
from fastapi.encoders import jsonable_encoder
from typing import Optional, List
from pydantic import BaseModel
from auth import get_current_user
from utils import clean_text_response
from analysis import analyze_patient_report
from voice import recognize_speech, text_to_speech, extract_text_from_pdf
from docx import Document
import re
import io
from datetime import datetime
from bson import ObjectId
import asyncio
from bson.errors import InvalidId
import base64
import os
from pathlib import Path as PathLib
import tempfile
import subprocess
# Define the ChatRequest model with an optional patient_id
class ChatRequest(BaseModel):
message: str
history: Optional[List[dict]] = None
format: Optional[str] = "clean"
temperature: Optional[float] = 0.7
max_new_tokens: Optional[int] = 512
patient_id: Optional[str] = None
class VoiceOutputRequest(BaseModel):
text: str
language: str = "en-US"
slow: bool = False
return_format: str = "mp3"
class RiskLevel(BaseModel):
level: str
score: float
factors: Optional[List[str]] = None
def create_router(agent, logger, patients_collection, analysis_collection, users_collection, chats_collection, notifications_collection):
router = APIRouter()
@router.get("/status")
async def status(current_user: dict = Depends(get_current_user)):
logger.info(f"Status endpoint accessed by {current_user['email']}")
return {
"status": "running",
"timestamp": datetime.utcnow().isoformat(),
"version": "2.6.0",
"features": ["chat", "voice-input", "voice-output", "patient-analysis", "report-upload", "patient-reports-pdf", "all-patients-reports-pdf"]
}
@router.get("/patients/analysis-results")
async def get_patient_analysis_results(
name: Optional[str] = Query(None),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Fetching analysis results by {current_user['email']}")
try:
query = {}
if name:
name_regex = re.compile(name, re.IGNORECASE)
matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None)
patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p]
if not patient_ids:
return []
query = {"patient_id": {"$in": patient_ids}}
analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100)
enriched_results = []
for analysis in analyses:
patient = await patients_collection.find_one({"fhir_id": analysis.get("patient_id")})
if not patient:
continue # Skip if patient no longer exists
# Format the response to match the expected structure
formatted_analysis = {
"_id": str(analysis["_id"]),
"patient_id": analysis.get("patient_id"),
"full_name": patient.get("full_name", "Unknown"),
"timestamp": analysis.get("timestamp"),
"suicide_risk": {
"level": analysis.get("suicide_risk", {}).get("level", "none"),
"score": analysis.get("suicide_risk", {}).get("score", 0.0),
"factors": analysis.get("suicide_risk", {}).get("factors", [])
},
"summary": analysis.get("summary", ""),
"recommendations": analysis.get("recommendations", []),
# Add patient demographic information for modal display
"date_of_birth": patient.get("date_of_birth"),
"gender": patient.get("gender"),
"city": patient.get("city"),
"state": patient.get("state"),
"phone": patient.get("phone"),
"email": patient.get("email"),
"address": patient.get("address"),
"zip_code": patient.get("zip_code"),
"insurance": patient.get("insurance"),
"emergency_contact": patient.get("emergency_contact")
}
enriched_results.append(formatted_analysis)
return enriched_results
except Exception as e:
logger.error(f"Error fetching analysis results: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve analysis results")
@router.post("/patients/analyze")
async def analyze_patients(
current_user: dict = Depends(get_current_user)
):
"""Trigger analysis for all patients"""
logger.info(f"Triggering analysis for all patients by {current_user['email']}")
try:
# Get all patients
patients = await patients_collection.find({}).to_list(length=None)
if not patients:
return {"message": "No patients found to analyze", "analyzed_count": 0}
analyzed_count = 0
for patient in patients:
try:
from analysis import analyze_patient
await analyze_patient(patient)
analyzed_count += 1
logger.info(f"✅ Analyzed patient: {patient.get('full_name', 'Unknown')}")
except Exception as e:
logger.error(f"❌ Failed to analyze patient {patient.get('full_name', 'Unknown')}: {e}")
continue
return {
"message": f"Analysis completed for {analyzed_count} patients",
"analyzed_count": analyzed_count,
"total_patients": len(patients)
}
except Exception as e:
logger.error(f"Error triggering analysis: {e}")
raise HTTPException(status_code=500, detail="Failed to trigger analysis")
@router.post("/patients/{patient_id}/analyze")
async def analyze_specific_patient(
patient_id: str = Path(..., description="The ID of the patient to analyze"),
current_user: dict = Depends(get_current_user)
):
"""Trigger analysis for a specific patient"""
logger.info(f"Triggering analysis for patient {patient_id} by {current_user['email']}")
try:
# Get the patient
patient = await patients_collection.find_one({"fhir_id": patient_id})
if not patient:
raise HTTPException(status_code=404, detail="Patient not found")
# Analyze the patient
from analysis import analyze_patient
await analyze_patient(patient)
return {
"message": f"Analysis completed for patient {patient.get('full_name', 'Unknown')}",
"patient_id": patient_id,
"patient_name": patient.get("full_name", "Unknown")
}
except Exception as e:
logger.error(f"Error analyzing patient {patient_id}: {e}")
raise HTTPException(status_code=500, detail="Failed to analyze patient")
@router.get("/patients/{patient_id}/analysis-reports/pdf")
async def get_patient_analysis_reports_pdf(
patient_id: str = Path(..., description="The ID of the patient"),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Generating PDF analysis reports for patient {patient_id} by {current_user['email']}")
try:
# Fetch patient details
patient = await patients_collection.find_one({"fhir_id": patient_id})
if not patient:
raise HTTPException(status_code=404, detail="Patient not found")
# Fetch all analyses for the patient
analyses = await analysis_collection.find({"patient_id": patient_id}).sort("timestamp", -1).to_list(length=None)
if not analyses:
raise HTTPException(status_code=404, detail="No analysis reports found for this patient")
# Generate PDF using ReportLab
try:
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
from io import BytesIO
except ImportError:
logger.error("ReportLab not available, falling back to text report")
raise HTTPException(status_code=500, detail="PDF generation not available")
logger.info("📄 Generating PDF report using ReportLab")
buffer = BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=A4, rightMargin=72, leftMargin=72, topMargin=72, bottomMargin=18)
story = []
styles = getSampleStyleSheet()
# Custom styles
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=18,
spaceAfter=30,
alignment=1,
textColor=colors.darkblue
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=14,
spaceAfter=12,
spaceBefore=20,
textColor=colors.darkblue
)
normal_style = styles['Normal']
# Title
patient_name = patient.get("full_name", "Unknown")
story.append(Paragraph(f"PATIENT ANALYSIS REPORT", title_style))
story.append(Paragraph(f"Patient: {patient_name}", normal_style))
story.append(Paragraph(f"Generated on {datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')}", normal_style))
story.append(Spacer(1, 20))
# Analysis Reports
for idx, analysis in enumerate(analyses, 1):
timestamp = analysis.get("timestamp", datetime.utcnow()).strftime("%Y-%m-%d %H:%M:%S")
suicide_risk = analysis.get("suicide_risk", {})
risk_level = suicide_risk.get("level", "none").capitalize()
risk_score = suicide_risk.get("score", 0.0)
risk_factors = suicide_risk.get("factors", [])
story.append(Paragraph(f"Report {idx} - {timestamp}", heading_style))
# Risk Assessment Table
risk_data = [
["Risk Level", risk_level],
["Risk Score", f"{risk_score:.2f}"],
["Risk Factors", ", ".join(risk_factors) if risk_factors else "None"]
]
risk_table = Table(risk_data, colWidths=[2*inch, 4*inch])
risk_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (0, -1), colors.lightblue),
('TEXTCOLOR', (0, 0), (-1, -1), colors.black),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 0), (-1, -1), 10),
('BOTTOMPADDING', (0, 0), (-1, -1), 12),
('BACKGROUND', (1, 0), (1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(risk_table)
story.append(Spacer(1, 12))
# Summary and Recommendations
if analysis.get("summary"):
story.append(Paragraph("Summary:", heading_style))
story.append(Paragraph(str(analysis["summary"]), normal_style))
story.append(Spacer(1, 12))
if analysis.get("recommendations"):
recommendations = analysis["recommendations"]
if isinstance(recommendations, list):
recommendations = ", ".join(recommendations)
story.append(Paragraph("Recommendations:", heading_style))
story.append(Paragraph(str(recommendations), normal_style))
story.append(Spacer(1, 20))
# Build PDF
doc.build(story)
pdf_content = buffer.getvalue()
buffer.close()
# Return PDF as response
return StreamingResponse(
io.BytesIO(pdf_content),
media_type="application/pdf",
headers={"Content-Disposition": f"attachment; filename={patient_name.replace(' ', '_')}_{patient_id}_analysis_reports.pdf"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error generating PDF report for patient {patient_id}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}")
@router.get("/patients/analysis-reports/all/pdf")
async def get_all_patients_analysis_reports_pdf(
current_user: dict = Depends(get_current_user)
):
logger.info(f"Generating PDF analysis reports for all patients by {current_user['email']}")
try:
# Fetch all patients
patients = await patients_collection.find().to_list(length=None)
if not patients:
raise HTTPException(status_code=404, detail="No patients found")
# Generate PDF using ReportLab
try:
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
from io import BytesIO
except ImportError:
logger.error("ReportLab not available, falling back to text report")
raise HTTPException(status_code=500, detail="PDF generation not available")
logger.info("📄 Generating PDF report for all patients using ReportLab")
buffer = BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=A4, rightMargin=72, leftMargin=72, topMargin=72, bottomMargin=18)
story = []
styles = getSampleStyleSheet()
# Custom styles
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=20,
spaceAfter=30,
alignment=1,
textColor=colors.darkblue
)
patient_heading_style = ParagraphStyle(
'PatientHeading',
parent=styles['Heading2'],
fontSize=16,
spaceAfter=15,
spaceBefore=25,
textColor=colors.darkgreen
)
report_heading_style = ParagraphStyle(
'ReportHeading',
parent=styles['Heading3'],
fontSize=12,
spaceAfter=10,
spaceBefore=15,
textColor=colors.darkblue
)
normal_style = styles['Normal']
# Title
story.append(Paragraph("ALL PATIENTS ANALYSIS REPORTS", title_style))
story.append(Paragraph(f"Generated on {datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')}", normal_style))
story.append(Spacer(1, 30))
# Flag to track if any analyses exist
has_analyses = False
# Iterate through each patient
for patient in patients:
patient_id = patient.get("fhir_id")
patient_name = patient.get("full_name", "Unknown")
# Fetch all analyses for the current patient
analyses = await analysis_collection.find({"patient_id": patient_id}).sort("timestamp", -1).to_list(length=None)
if not analyses:
continue # Skip patients with no analyses
has_analyses = True
# Patient section
story.append(Paragraph(f"Patient: {patient_name}", patient_heading_style))
story.append(Spacer(1, 10))
# Analysis Reports for this patient
for idx, analysis in enumerate(analyses, 1):
timestamp = analysis.get("timestamp", datetime.utcnow()).strftime("%Y-%m-%d %H:%M:%S")
suicide_risk = analysis.get("suicide_risk", {})
risk_level = suicide_risk.get("level", "none").capitalize()
risk_score = suicide_risk.get("score", 0.0)
risk_factors = suicide_risk.get("factors", [])
story.append(Paragraph(f"Report {idx} - {timestamp}", report_heading_style))
# Risk Assessment Table
risk_data = [
["Risk Level", risk_level],
["Risk Score", f"{risk_score:.2f}"],
["Risk Factors", ", ".join(risk_factors) if risk_factors else "None"]
]
risk_table = Table(risk_data, colWidths=[2*inch, 4*inch])
risk_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (0, -1), colors.lightblue),
('TEXTCOLOR', (0, 0), (-1, -1), colors.black),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 0), (-1, -1), 9),
('BOTTOMPADDING', (0, 0), (-1, -1), 8),
('BACKGROUND', (1, 0), (1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(risk_table)
story.append(Spacer(1, 10))
# Summary and Recommendations
if analysis.get("summary"):
story.append(Paragraph("Summary:", report_heading_style))
story.append(Paragraph(str(analysis["summary"]), normal_style))
story.append(Spacer(1, 10))
if analysis.get("recommendations"):
recommendations = analysis["recommendations"]
if isinstance(recommendations, list):
recommendations = ", ".join(recommendations)
story.append(Paragraph("Recommendations:", report_heading_style))
story.append(Paragraph(str(recommendations), normal_style))
story.append(Spacer(1, 15))
# Add page break between patients
story.append(PageBreak())
if not has_analyses:
raise HTTPException(status_code=404, detail="No analysis reports found for any patients")
# Build PDF
doc.build(story)
pdf_content = buffer.getvalue()
buffer.close()
# Return PDF as response
return StreamingResponse(
io.BytesIO(pdf_content),
media_type="application/pdf",
headers={"Content-Disposition": f"attachment; filename=all_patients_analysis_reports_{datetime.utcnow().strftime('%Y%m%d')}.pdf"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error generating PDF report for all patients: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}")
@router.post("/chat-stream")
async def chat_stream_endpoint(
request: ChatRequest,
current_user: dict = Depends(get_current_user)
):
logger.info(f"Chat stream initiated by {current_user['email']}")
async def token_stream():
try:
conversation = [{"role": "system", "content": agent.chat_prompt}]
if request.history:
conversation.extend(request.history)
conversation.append({"role": "user", "content": request.message})
input_ids = agent.tokenizer.apply_chat_template(
conversation, add_generation_prompt=True, return_tensors="pt"
).to(agent.device)
output = agent.model.generate(
input_ids,
do_sample=True,
temperature=request.temperature,
max_new_tokens=request.max_new_tokens,
pad_token_id=agent.tokenizer.eos_token_id,
return_dict_in_generate=True
)
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
cleaned_text = clean_text_response(text)
full_response = ""
# Store chat session in the chats_collection
chat_entry = {
"user_id": current_user["email"],
"patient_id": request.patient_id,
"message": request.message,
"response": cleaned_text,
"chat_type": "chat",
"timestamp": datetime.utcnow(),
"temperature": request.temperature,
"max_new_tokens": request.max_new_tokens
}
logger.info(f"Attempting to insert chat entry into chats_collection: {chat_entry}")
try:
result = await chats_collection.insert_one(chat_entry)
chat_entry["_id"] = str(result.inserted_id)
logger.info(f"Successfully inserted chat entry with ID: {chat_entry['_id']}")
except Exception as db_error:
logger.error(f"Failed to insert chat entry into chats_collection: {str(db_error)}")
yield f"⚠️ Error: Failed to store chat in database: {str(db_error)}"
return
for chunk in cleaned_text.split():
full_response += chunk + " "
yield chunk + " "
await asyncio.sleep(0.05)
# Update chat entry with full response
try:
update_result = await chats_collection.update_one(
{"_id": result.inserted_id},
{"$set": {"response": full_response.strip()}}
)
logger.info(f"Updated chat entry {chat_entry['_id']}: matched {update_result.matched_count}, modified {update_result.modified_count}")
except Exception as update_error:
logger.error(f"Failed to update chat entry {chat_entry['_id']}: {str(update_error)}")
yield f"⚠️ Warning: Chat streamed successfully, but failed to update in database: {str(update_error)}"
except Exception as e:
logger.error(f"Streaming error: {e}")
yield f"⚠️ Error: {e}"
return StreamingResponse(token_stream(), media_type="text/plain")
@router.get("/chats")
async def get_chats(
current_user: dict = Depends(get_current_user)
):
logger.info(f"Fetching chats for {current_user['email']}")
try:
chats = await chats_collection.find({"user_id": current_user["email"], "chat_type": "chat"}).sort("timestamp", -1).to_list(length=100)
logger.info(f"Retrieved {len(chats)} chats for {current_user['email']}")
return [
{
"id": str(chat["_id"]),
"title": chat.get("message", "Untitled Chat")[:30],
"timestamp": chat["timestamp"].isoformat(),
"message": chat["message"],
"response": chat["response"]
}
for chat in chats
]
except Exception as e:
logger.error(f"Error fetching chats: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve chats")
@router.get("/notifications")
async def get_notifications(
current_user: dict = Depends(get_current_user)
):
logger.info(f"Fetching notifications for {current_user['email']}")
try:
# Fetch notifications for the current user
notifications = await notifications_collection.find({"user_id": current_user["email"]}).sort("timestamp", -1).to_list(length=10)
logger.info(f"Retrieved {len(notifications)} notifications for {current_user['email']}")
return [
{
"id": str(notification["_id"]),
"title": f"Alert for Patient {notification.get('patient_id', 'Unknown')}",
"message": notification.get("message", "No message"),
"timestamp": notification.get("timestamp", datetime.utcnow()).isoformat(),
"severity": notification.get("severity", "info"),
"read": notification.get("read", False)
}
for notification in notifications
]
except Exception as e:
logger.error(f"Error fetching notifications: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve notifications")
@router.post("/notifications/{notification_id}/read")
async def mark_notification_as_read(
notification_id: str = Path(..., description="The ID of the notification to mark as read"),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Marking notification {notification_id} as read for {current_user['email']}")
try:
result = await notifications_collection.update_one(
{"_id": ObjectId(notification_id), "user_id": current_user["email"]},
{"$set": {"read": True}}
)
if result.matched_count == 0:
raise HTTPException(status_code=404, detail="Notification not found or not authorized")
return {"status": "success", "message": "Notification marked as read"}
except InvalidId:
raise HTTPException(status_code=400, detail="Invalid notification ID format")
except Exception as e:
logger.error(f"Error marking notification as read: {e}")
raise HTTPException(status_code=500, detail="Failed to mark notification as read")
@router.post("/notifications/read-all")
async def mark_all_notifications_as_read(
current_user: dict = Depends(get_current_user)
):
logger.info(f"Marking all notifications as read for {current_user['email']}")
try:
result = await notifications_collection.update_many(
{"user_id": current_user["email"], "read": False},
{"$set": {"read": True}}
)
if result.matched_count == 0:
logger.info("No unread notifications to mark as read")
return {"status": "success", "message": f"Marked {result.modified_count} notifications as read"}
except Exception as e:
logger.error(f"Error marking all notifications as read: {e}")
raise HTTPException(status_code=500, detail="Failed to mark all notifications as read")
@router.post("/voice/transcribe")
async def transcribe_voice(
audio: UploadFile = File(...),
language: str = Query("en-US", description="Language code for speech recognition"),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Voice transcription initiated by {current_user['email']}")
try:
audio_data = await audio.read()
if not audio.filename.lower().endswith(('.wav', '.mp3', '.ogg', '.flac')):
raise HTTPException(status_code=400, detail="Unsupported audio format")
text = recognize_speech(audio_data, language)
return {"text": text}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice transcription: {e}")
raise HTTPException(status_code=500, detail="Error processing voice input")
@router.post("/voice/synthesize")
async def synthesize_voice(
request: VoiceOutputRequest,
current_user: dict = Depends(get_current_user)
):
logger.info(f"Voice synthesis initiated by {current_user['email']}")
try:
audio_data = text_to_speech(request.text, request.language, request.slow)
if request.return_format == "base64":
return {"audio": base64.b64encode(audio_data).decode('utf-8')}
else:
return StreamingResponse(
io.BytesIO(audio_data),
media_type="audio/mpeg",
headers={"Content-Disposition": "attachment; filename=speech.mp3"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice synthesis: {e}")
raise HTTPException(status_code=500, detail="Error generating voice output")
@router.post("/voice/chat")
async def voice_chat_endpoint(
audio: UploadFile = File(...),
language: str = Query("en-US", description="Language code for speech recognition"),
temperature: float = Query(0.7, ge=0.1, le=1.0),
max_new_tokens: int = Query(512, ge=50, le=1024),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Voice chat initiated by {current_user['email']}")
try:
audio_data = await audio.read()
user_message = recognize_speech(audio_data, language)
chat_response = agent.chat(
message=user_message,
history=[],
temperature=temperature,
max_new_tokens=max_new_tokens
)
audio_data = text_to_speech(chat_response, language.split('-')[0])
# Store voice chat in the chats_collection
chat_entry = {
"user_id": current_user["email"],
"patient_id": None,
"message": user_message,
"response": chat_response,
"chat_type": "voice_chat",
"timestamp": datetime.utcnow(),
"temperature": temperature,
"max_new_tokens": max_new_tokens
}
logger.info(f"Attempting to insert voice chat entry into chats_collection: {chat_entry}")
try:
result = await chats_collection.insert_one(chat_entry)
chat_entry["_id"] = str(result.inserted_id)
logger.info(f"Successfully inserted voice chat entry with ID: {chat_entry['_id']}")
except Exception as db_error:
logger.error(f"Failed to insert voice chat entry into chats_collection: {str(db_error)}")
raise HTTPException(status_code=500, detail=f"Failed to store voice chat: {str(db_error)}")
return StreamingResponse(
io.BytesIO(audio_data),
media_type="audio/mpeg",
headers={"Content-Disposition": "attachment; filename=response.mp3"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice chat: {e}")
raise HTTPException(status_code=500, detail="Error processing voice chat")
@router.post("/analyze-report")
async def analyze_clinical_report(
file: UploadFile = File(...),
patient_id: Optional[str] = Form(None),
temperature: float = Form(0.5),
max_new_tokens: int = Form(1024),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Report analysis initiated by {current_user['email']}")
try:
content_type = file.content_type
allowed_types = [
'application/pdf',
'text/plain',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
]
if content_type not in allowed_types:
raise HTTPException(
status_code=400,
detail=f"Unsupported file type: {content_type}. Supported types: PDF, TXT, DOCX"
)
file_content = await file.read()
if content_type == 'application/pdf':
text = extract_text_from_pdf(file_content)
elif content_type == 'text/plain':
text = file_content.decode('utf-8')
elif content_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
doc = Document(io.BytesIO(file_content))
text = "\n".join([para.text for para in doc.paragraphs])
else:
raise HTTPException(status_code=400, detail="Unsupported file type")
text = clean_text_response(text)
if len(text.strip()) < 50:
raise HTTPException(
status_code=400,
detail="Extracted text is too short (minimum 50 characters required)"
)
analysis = await analyze_patient_report(
patient_id=patient_id,
report_content=text,
file_type=content_type,
file_content=file_content
)
logger.info(f"Analysis result for patient {patient_id}: {analysis}")
# Create a notification if suicide risk is detected
suicide_risk = analysis.get("suicide_risk", {})
logger.info(f"Suicide risk detected: {suicide_risk}")
if suicide_risk.get("level") != "none":
notification = {
"user_id": current_user["email"],
"message": f"Suicide risk alert for patient {patient_id}: {suicide_risk['level'].upper()} (Score: {suicide_risk['score']})",
"patient_id": patient_id,
"timestamp": datetime.utcnow(),
"severity": "high" if suicide_risk["level"] in ["moderate", "severe"] else "medium",
"read": False
}
await notifications_collection.insert_one(notification)
logger.info(f"✅ Created notification for suicide risk alert: {notification}")
else:
logger.warning(f"No suicide risk detected for patient {patient_id}, no notification created")
if "_id" in analysis and isinstance(analysis["_id"], ObjectId):
analysis["_id"] = str(analysis["_id"])
if "timestamp" in analysis and isinstance(analysis["timestamp"], datetime):
analysis["timestamp"] = analysis["timestamp"].isoformat()
return JSONResponse(content=jsonable_encoder({
"status": "success",
"analysis": analysis,
"patient_id": patient_id,
"file_type": content_type,
"file_size": len(file_content)
}))
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in report analysis: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Failed to analyze report: {str(e)}"
)
@router.delete("/patients/{patient_id}")
async def delete_patient(
patient_id: str,
current_user: dict = Depends(get_current_user)
):
logger.info(f"Patient deletion initiated by {current_user['email']} for patient {patient_id}")
try:
# Check if the patient exists
patient = await patients_collection.find_one({"fhir_id": patient_id})
if not patient:
raise HTTPException(status_code=404, detail="Patient not found")
# Check if the current user is authorized (e.g., created_by matches or is admin)
if patient.get("created_by") != current_user["email"] and not current_user.get("is_admin", False):
raise HTTPException(status_code=403, detail="Not authorized to delete this patient")
# Delete all analyses and chats associated with this patient
await analysis_collection.delete_many({"patient_id": patient_id})
await chats_collection.delete_many({"patient_id": patient_id})
logger.info(f"Deleted analyses and chats for patient {patient_id}")
# Delete the patient
await patients_collection.delete_one({"fhir_id": patient_id})
logger.info(f"Patient {patient_id} deleted successfully")
return {"status": "success", "message": f"Patient {patient_id} and associated analyses/chats deleted"}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error deleting patient {patient_id}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to delete patient: {str(e)}")
return router