|
|
|
import os |
|
import sys |
|
import json |
|
import logging |
|
import re |
|
import hashlib |
|
import io |
|
import base64 |
|
from datetime import datetime |
|
from typing import List, Dict, Optional, Tuple |
|
from enum import Enum |
|
from fastapi import FastAPI, HTTPException, UploadFile, File, Query, Form, Depends |
|
from fastapi.responses import StreamingResponse, JSONResponse |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.security import OAuth2PasswordBearer |
|
from fastapi.encoders import jsonable_encoder |
|
from pydantic import BaseModel |
|
import asyncio |
|
from bson import ObjectId |
|
import speech_recognition as sr |
|
from gtts import gTTS |
|
from pydub import AudioSegment |
|
import PyPDF2 |
|
import mimetypes |
|
from docx import Document |
|
from jose import JWTError, jwt |
|
from txagent.txagent import TxAgent |
|
from db.mongo import get_mongo_client |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
logger = logging.getLogger("TxAgentAPI") |
|
|
|
|
|
app = FastAPI(title="TxAgent API", version="2.6.0") |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"] |
|
) |
|
|
|
|
|
SECRET_KEY = os.getenv("SECRET_KEY", "your-secret-key") |
|
ALGORITHM = "HS256" |
|
|
|
|
|
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="https://rocketfarmstudios-cps-api.hf.space/auth/login") |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
temperature: float = 0.7 |
|
max_new_tokens: int = 512 |
|
history: Optional[List[Dict]] = None |
|
format: Optional[str] = "clean" |
|
|
|
class VoiceInputRequest(BaseModel): |
|
audio_format: str = "wav" |
|
language: str = "en-US" |
|
|
|
class VoiceOutputRequest(BaseModel): |
|
text: str |
|
language: str = "en" |
|
slow: bool = False |
|
return_format: str = "mp3" |
|
|
|
|
|
class RiskLevel(str, Enum): |
|
NONE = "none" |
|
LOW = "low" |
|
MODERATE = "moderate" |
|
HIGH = "high" |
|
SEVERE = "severe" |
|
|
|
|
|
agent = None |
|
patients_collection = None |
|
analysis_collection = None |
|
alerts_collection = None |
|
|
|
|
|
async def get_current_user(token: str = Depends(oauth2_scheme)): |
|
credentials_exception = HTTPException( |
|
status_code=401, |
|
detail="Could not validate credentials", |
|
headers={"WWW-Authenticate": "Bearer"}, |
|
) |
|
try: |
|
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) |
|
email: str = payload.get("sub") |
|
if email is None: |
|
raise credentials_exception |
|
except JWTError: |
|
raise credentials_exception |
|
user = await users_collection.find_one({"email": email}) |
|
if user is None: |
|
raise credentials_exception |
|
return user |
|
|
|
|
|
def clean_text_response(text: str) -> str: |
|
text = re.sub(r'\n\s*\n', '\n\n', text) |
|
text = re.sub(r'[ ]+', ' ', text) |
|
return text.replace("**", "").replace("__", "").strip() |
|
|
|
def extract_section(text: str, heading: str) -> str: |
|
try: |
|
pattern = rf"{re.escape(heading)}:\s*\n(.*?)(?=\n[A-Z][^\n]*:|\Z)" |
|
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE) |
|
return match.group(1).strip() if match else "" |
|
except Exception as e: |
|
logger.error(f"Section extraction failed for heading '{heading}': {e}") |
|
return "" |
|
|
|
def structure_medical_response(text: str) -> Dict: |
|
def extract_improved(text: str, heading: str) -> str: |
|
patterns = [ |
|
rf"{re.escape(heading)}:\s*\n(.*?)(?=\n\s*\n|\Z)", |
|
rf"\*\*{re.escape(heading)}\*\*:\s*\n(.*?)(?=\n\s*\n|\Z)", |
|
rf"{re.escape(heading)}[\s\-]+(.*?)(?=\n\s*\n|\Z)", |
|
rf"\n{re.escape(heading)}\s*\n(.*?)(?=\n\s*\n|\Z)" |
|
] |
|
for pattern in patterns: |
|
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE) |
|
if match: |
|
content = match.group(1).strip() |
|
content = re.sub(r'^\s*[\-\*]\s*', '', content, flags=re.MULTILINE) |
|
return content |
|
return "" |
|
|
|
text = text.replace('**', '').replace('__', '') |
|
return { |
|
"summary": extract_improved(text, "Summary of Patient's Medical History") or |
|
extract_improved(text, "Summarize the patient's medical history"), |
|
"risks": extract_improved(text, "Identify Risks or Red Flags") or |
|
extract_improved(text, "Risks or Red Flags"), |
|
"missed_issues": extract_improved(text, "Missed Diagnoses or Treatments") or |
|
extract_improved(text, "What the doctor might have missed"), |
|
"recommendations": extract_improved(text, "Suggest Next Clinical Steps") or |
|
extract_improved(text, "Suggested Clinical Actions") |
|
} |
|
|
|
def detect_suicide_risk(text: str) -> Tuple[RiskLevel, float, List[str]]: |
|
suicide_keywords = [ |
|
'suicide', 'suicidal', 'kill myself', 'end my life', |
|
'want to die', 'self-harm', 'self harm', 'hopeless', |
|
'no reason to live', 'plan to die' |
|
] |
|
explicit_mentions = [kw for kw in suicide_keywords if kw in text.lower()] |
|
if not explicit_mentions: |
|
return RiskLevel.NONE, 0.0, [] |
|
|
|
assessment_prompt = ( |
|
"Assess the suicide risk level based on this text. " |
|
"Consider frequency, specificity, and severity of statements. " |
|
"Respond with JSON format: {\"risk_level\": \"low/moderate/high/severe\", " |
|
"\"risk_score\": 0-1, \"factors\": [\"list of risk factors\"]}\n\n" |
|
f"Text to assess:\n{text}" |
|
) |
|
|
|
try: |
|
response = agent.chat( |
|
message=assessment_prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=256 |
|
) |
|
json_match = re.search(r'\{.*\}', response, re.DOTALL) |
|
if json_match: |
|
assessment = json.loads(json_match.group()) |
|
return ( |
|
RiskLevel(assessment.get("risk_level", "none").lower()), |
|
float(assessment.get("risk_score", 0)), |
|
assessment.get("factors", []) |
|
) |
|
except Exception as e: |
|
logger.error(f"Error in suicide risk assessment: {e}") |
|
|
|
risk_score = min(0.1 * len(explicit_mentions), 0.9) |
|
if risk_score > 0.7: |
|
return RiskLevel.HIGH, risk_score, explicit_mentions |
|
elif risk_score > 0.4: |
|
return RiskLevel.MODERATE, risk_score, explicit_mentions |
|
return RiskLevel.LOW, risk_score, explicit_mentions |
|
|
|
async def create_alert(patient_id: str, risk_data: dict): |
|
alert_doc = { |
|
"patient_id": patient_id, |
|
"type": "suicide_risk", |
|
"level": risk_data["level"], |
|
"score": risk_data["score"], |
|
"factors": risk_data["factors"], |
|
"timestamp": datetime.utcnow(), |
|
"acknowledged": False |
|
} |
|
await alerts_collection.insert_one(alert_doc) |
|
logger.warning(f"⚠️ Created suicide risk alert for patient {patient_id}") |
|
|
|
def serialize_patient(patient: dict) -> dict: |
|
patient_copy = patient.copy() |
|
if "_id" in patient_copy: |
|
patient_copy["_id"] = str(patient_copy["_id"]) |
|
return patient_copy |
|
|
|
def compute_patient_data_hash(data: dict) -> str: |
|
serialized = json.dumps(data, sort_keys=True) |
|
return hashlib.sha256(serialized.encode()).hexdigest() |
|
|
|
def compute_file_content_hash(file_content: bytes) -> str: |
|
return hashlib.sha256(file_content).hexdigest() |
|
|
|
def extract_text_from_pdf(pdf_data: bytes) -> str: |
|
try: |
|
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data)) |
|
text = "" |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() or "" |
|
return clean_text_response(text) |
|
except Exception as e: |
|
logger.error(f"Error extracting text from PDF: {e}") |
|
raise HTTPException(status_code=400, detail="Failed to extract text from PDF") |
|
|
|
async def analyze_patient_report(patient_id: Optional[str], report_content: str, file_type: str, file_content: bytes): |
|
identifier = patient_id if patient_id else compute_file_content_hash(file_content) |
|
report_data = {"identifier": identifier, "content": report_content, "file_type": file_type} |
|
report_hash = compute_patient_data_hash(report_data) |
|
logger.info(f"🧾 Analyzing report for identifier: {identifier}") |
|
|
|
existing_analysis = await analysis_collection.find_one({"identifier": identifier, "report_hash": report_hash}) |
|
if existing_analysis: |
|
logger.info(f"✅ No changes in report data for {identifier}, skipping analysis") |
|
return existing_analysis |
|
|
|
prompt = ( |
|
"You are a clinical decision support AI. Analyze the following patient report:\n" |
|
"1. Summarize the patient's medical history.\n" |
|
"2. Identify risks or red flags (including mental health and suicide risk).\n" |
|
"3. Highlight missed diagnoses or treatments.\n" |
|
"4. Suggest next clinical steps.\n" |
|
f"\nPatient Report ({file_type}):\n{'-'*40}\n{report_content[:10000]}" |
|
) |
|
|
|
raw_response = agent.chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.7, |
|
max_new_tokens=1024 |
|
) |
|
structured_response = structure_medical_response(raw_response) |
|
|
|
risk_level, risk_score, risk_factors = detect_suicide_risk(raw_response) |
|
suicide_risk = { |
|
"level": risk_level.value, |
|
"score": risk_score, |
|
"factors": risk_factors |
|
} |
|
|
|
analysis_doc = { |
|
"identifier": identifier, |
|
"patient_id": patient_id, |
|
"timestamp": datetime.utcnow(), |
|
"summary": structured_response, |
|
"suicide_risk": suicide_risk, |
|
"raw": raw_response, |
|
"report_hash": report_hash, |
|
"file_type": file_type |
|
} |
|
|
|
await analysis_collection.update_one( |
|
{"identifier": identifier, "report_hash": report_hash}, |
|
{"$set": analysis_doc}, |
|
upsert=True |
|
) |
|
|
|
if patient_id and risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]: |
|
await create_alert(patient_id, suicide_risk) |
|
|
|
logger.info(f"✅ Stored analysis for identifier {identifier}") |
|
return analysis_doc |
|
|
|
async def analyze_all_patients(): |
|
patients = await patients_collection.find({}).to_list(length=None) |
|
for patient in patients: |
|
await analyze_patient(patient) |
|
await asyncio.sleep(0.1) |
|
|
|
async def analyze_patient(patient: dict): |
|
try: |
|
serialized = serialize_patient(patient) |
|
patient_id = serialized.get("fhir_id") |
|
patient_hash = compute_patient_data_hash(serialized) |
|
logger.info(f"🧾 Analyzing patient: {patient_id}") |
|
|
|
existing_analysis = await analysis_collection.find_one({"patient_id": patient_id}) |
|
if existing_analysis and existing_analysis.get("data_hash") == patient_hash: |
|
logger.info(f"✅ No changes in patient data for {patient_id}, skipping analysis") |
|
return |
|
|
|
doc = json.dumps(serialized, indent=2) |
|
message = ( |
|
"You are a clinical decision support AI.\n\n" |
|
"Given the patient document below:\n" |
|
"1. Summarize the patient's medical history.\n" |
|
"2. Identify risks or red flags (including mental health and suicide risk).\n" |
|
"3. Highlight missed diagnoses or treatments.\n" |
|
"4. Suggest next clinical steps.\n" |
|
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}" |
|
) |
|
|
|
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024) |
|
structured = structure_medical_response(raw) |
|
|
|
risk_level, risk_score, risk_factors = detect_suicide_risk(raw) |
|
suicide_risk = { |
|
"level": risk_level.value, |
|
"score": risk_score, |
|
"factors": risk_factors |
|
} |
|
|
|
analysis_doc = { |
|
"identifier": patient_id, |
|
"patient_id": patient_id, |
|
"timestamp": datetime.utcnow(), |
|
"summary": structured, |
|
"suicide_risk": suicide_risk, |
|
"raw": raw, |
|
"data_hash": patient_hash |
|
} |
|
|
|
await analysis_collection.update_one( |
|
{"identifier": patient_id}, |
|
{"$set": analysis_doc}, |
|
upsert=True |
|
) |
|
|
|
if risk_level in [RiskLevel.MODERATE, RiskLevel.HIGH, RiskLevel.SEVERE]: |
|
await create_alert(patient_id, suicide_risk) |
|
|
|
logger.info(f"✅ Stored analysis for patient {patient_id}") |
|
|
|
except Exception as e: |
|
logger.error(f"Error analyzing patient: {e}") |
|
|
|
def recognize_speech(audio_data: bytes, language: str = "en-US") -> str: |
|
recognizer = sr.Recognizer() |
|
try: |
|
with io.BytesIO(audio_data) as audio_file: |
|
with sr.AudioFile(audio_file) as source: |
|
audio = recognizer.record(source) |
|
text = recognizer.recognize_google(audio, language=language) |
|
return text |
|
except sr.UnknownValueError: |
|
logger.error("Google Speech Recognition could not understand audio") |
|
raise HTTPException(status_code=400, detail="Could not understand audio") |
|
except sr.RequestError as e: |
|
logger.error(f"Could not request results from Google Speech Recognition service; {e}") |
|
raise HTTPException(status_code=503, detail="Speech recognition service unavailable") |
|
except Exception as e: |
|
logger.error(f"Error in speech recognition: {e}") |
|
raise HTTPException(status_code=500, detail="Error processing speech") |
|
|
|
def text_to_speech(text: str, language: str = "en", slow: bool = False) -> bytes: |
|
try: |
|
tts = gTTS(text=text, lang=language, slow=slow) |
|
mp3_fp = io.BytesIO() |
|
tts.write_to_fp(mp3_fp) |
|
mp3_fp.seek(0) |
|
return mp3_fp.read() |
|
except Exception as e: |
|
logger.error(f"Error in text-to-speech conversion: {e}") |
|
raise HTTPException(status_code=500, detail="Error generating speech") |
|
|
|
@app.on_event("startup") |
|
async def startup_event(): |
|
global agent, patients_collection, analysis_collection, alerts_collection |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
enable_finish=True, |
|
enable_rag=False, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=4, |
|
seed=42 |
|
) |
|
agent.chat_prompt = ( |
|
"You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations." |
|
) |
|
agent.init_model() |
|
logger.info("✅ TxAgent initialized") |
|
|
|
db = get_mongo_client()["cps_db"] |
|
global users_collection |
|
users_collection = db["users"] |
|
patients_collection = db["patients"] |
|
analysis_collection = db["patient_analysis_results"] |
|
alerts_collection = db["clinical_alerts"] |
|
logger.info("📡 Connected to MongoDB") |
|
|
|
asyncio.create_task(analyze_all_patients()) |
|
|
|
|
|
@app.get("/status") |
|
async def status(current_user: dict = Depends(get_current_user)): |
|
logger.info(f"Status endpoint accessed by {current_user['email']}") |
|
return { |
|
"status": "running", |
|
"timestamp": datetime.utcnow().isoformat(), |
|
"version": "2.6.0", |
|
"features": ["chat", "voice-input", "voice-output", "patient-analysis", "report-upload"] |
|
} |
|
|
|
@app.get("/patients/analysis-results") |
|
async def get_patient_analysis_results( |
|
name: Optional[str] = Query(None), |
|
current_user: dict = Depends(get_current_user) |
|
): |
|
logger.info(f"Fetching analysis results by {current_user['email']}") |
|
try: |
|
query = {} |
|
if name: |
|
name_regex = re.compile(name, re.IGNORECASE) |
|
matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None) |
|
patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p] |
|
if not patient_ids: |
|
return [] |
|
query = {"patient_id": {"$in": patient_ids}} |
|
|
|
analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100) |
|
enriched_results = [] |
|
for analysis in analyses: |
|
patient = await patients_collection.find_one({"fhir_id": analysis.get("patient_id")}) |
|
if patient: |
|
analysis["full_name"] = patient.get("full_name", "Unknown") |
|
analysis["_id"] = str(analysis["_id"]) |
|
enriched_results.append(analysis) |
|
|
|
return enriched_results |
|
|
|
except Exception as e: |
|
logger.error(f"Error fetching analysis results: {e}") |
|
raise HTTPException(status_code=500, detail="Failed to retrieve analysis results") |
|
|
|
@app.post("/chat-stream") |
|
async def chat_stream_endpoint( |
|
request: ChatRequest, |
|
current_user: dict = Depends(get_current_user) |
|
): |
|
logger.info(f"Chat stream initiated by {current_user['email']}") |
|
async def token_stream(): |
|
try: |
|
conversation = [{"role": "system", "content": agent.chat_prompt}] |
|
if request.history: |
|
conversation.extend(request.history) |
|
conversation.append({"role": "user", "content": request.message}) |
|
|
|
input_ids = agent.tokenizer.apply_chat_template( |
|
conversation, add_generation_prompt=True, return_tensors="pt" |
|
).to(agent.device) |
|
|
|
output = agent.model.generate( |
|
input_ids, |
|
do_sample=True, |
|
temperature=request.temperature, |
|
max_new_tokens=request.max_new_tokens, |
|
pad_token_id=agent.tokenizer.eos_token_id, |
|
return_dict_in_generate=True |
|
) |
|
|
|
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True) |
|
for chunk in text.split(): |
|
yield chunk + " " |
|
await asyncio.sleep(0.05) |
|
except Exception as e: |
|
logger.error(f"Streaming error: {e}") |
|
yield f"⚠️ Error: {e}" |
|
|
|
return StreamingResponse(token_stream(), media_type="text/plain") |
|
|
|
@app.post("/voice/transcribe") |
|
async def transcribe_voice( |
|
audio: UploadFile = File(...), |
|
language: str = Query("en-US", description="Language code for speech recognition"), |
|
current_user: dict = Depends(get_current_user) |
|
): |
|
logger.info(f"Voice transcription initiated by {current_user['email']}") |
|
try: |
|
audio_data = await audio.read() |
|
if not audio.filename.lower().endswith(('.wav', '.mp3', '.ogg', '.flac')): |
|
raise HTTPException(status_code=400, detail="Unsupported audio format") |
|
|
|
text = recognize_speech(audio_data, language) |
|
return {"text": text} |
|
|
|
except HTTPException: |
|
raise |
|
except Exception as e: |
|
logger.error(f"Error in voice transcription: {e}") |
|
raise HTTPException(status_code=500, detail="Error processing voice input") |
|
|
|
@app.post("/voice/synthesize") |
|
async def synthesize_voice( |
|
request: VoiceOutputRequest, |
|
current_user: dict = Depends(get_current_user) |
|
): |
|
logger.info(f"Voice synthesis initiated by {current_user['email']}") |
|
try: |
|
audio_data = text_to_speech(request.text, request.language, request.slow) |
|
|
|
if request.return_format == "base64": |
|
return {"audio": base64.b64encode(audio_data).decode('utf-8')} |
|
else: |
|
return StreamingResponse( |
|
io.BytesIO(audio_data), |
|
media_type="audio/mpeg", |
|
headers={"Content-Disposition": "attachment; filename=speech.mp3"} |
|
) |
|
|
|
except HTTPException: |
|
raise |
|
except Exception as e: |
|
logger.error(f"Error in voice synthesis: {e}") |
|
raise HTTPException(status_code=500, detail="Error generating voice output") |
|
|
|
@app.post("/voice/chat") |
|
async def voice_chat_endpoint( |
|
audio: UploadFile = File(...), |
|
language: str = Query("en-US", description="Language code for speech recognition"), |
|
temperature: float = Query(0.7, ge=0.1, le=1.0), |
|
max_new_tokens: int = Query(512, ge=50, le=1024), |
|
current_user: dict = Depends(get_current_user) |
|
): |
|
logger.info(f"Voice chat initiated by {current_user['email']}") |
|
try: |
|
audio_data = await audio.read() |
|
user_message = recognize_speech(audio_data, language) |
|
|
|
chat_response = agent.chat( |
|
message=user_message, |
|
history=[], |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens |
|
) |
|
|
|
audio_data = text_to_speech(chat_response, language.split('-')[0]) |
|
|
|
return StreamingResponse( |
|
io.BytesIO(audio_data), |
|
media_type="audio/mpeg", |
|
headers={"Content-Disposition": "attachment; filename=response.mp3"} |
|
) |
|
|
|
except HTTPException: |
|
raise |
|
except Exception as e: |
|
logger.error(f"Error in voice chat: {e}") |
|
raise HTTPException(status_code=500, detail="Error processing voice chat") |
|
|
|
@app.post("/analyze-report") |
|
async def analyze_clinical_report( |
|
file: UploadFile = File(...), |
|
patient_id: Optional[str] = Form(None), |
|
temperature: float = Form(0.5), |
|
max_new_tokens: int = Form(1024), |
|
current_user: dict = Depends(get_current_user) |
|
): |
|
logger.info(f"Report analysis initiated by {current_user['email']}") |
|
try: |
|
content_type = file.content_type |
|
allowed_types = [ |
|
'application/pdf', |
|
'text/plain', |
|
'application/vnd.openxmlformats-officedocument.wordprocessingml.document' |
|
] |
|
|
|
if content_type not in allowed_types: |
|
raise HTTPException( |
|
status_code=400, |
|
detail=f"Unsupported file type: {content_type}. Supported types: PDF, TXT, DOCX" |
|
) |
|
|
|
file_content = await file.read() |
|
|
|
if content_type == 'application/pdf': |
|
text = extract_text_from_pdf(file_content) |
|
elif content_type == 'text/plain': |
|
text = file_content.decode('utf-8') |
|
elif content_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document': |
|
doc = Document(io.BytesIO(file_content)) |
|
text = "\n".join([para.text for para in doc.paragraphs]) |
|
else: |
|
raise HTTPException(status_code=400, detail="Unsupported file type") |
|
|
|
text = clean_text_response(text) |
|
if len(text.strip()) < 50: |
|
raise HTTPException( |
|
status_code=400, |
|
detail="Extracted text is too short (minimum 50 characters required)" |
|
) |
|
|
|
analysis = await analyze_patient_report( |
|
patient_id=patient_id, |
|
report_content=text, |
|
file_type=content_type, |
|
file_content=file_content |
|
) |
|
|
|
if "_id" in analysis and isinstance(analysis["_id"], ObjectId): |
|
analysis["_id"] = str(analysis["_id"]) |
|
if "timestamp" in analysis and isinstance(analysis["timestamp"], datetime): |
|
analysis["timestamp"] = analysis["timestamp"].isoformat() |
|
|
|
return JSONResponse(content=jsonable_encoder({ |
|
"status": "success", |
|
"analysis": analysis, |
|
"patient_id": patient_id, |
|
"file_type": content_type, |
|
"file_size": len(file_content) |
|
})) |
|
|
|
except HTTPException: |
|
raise |
|
except Exception as e: |
|
logger.error(f"Error in report analysis: {str(e)}") |
|
raise HTTPException( |
|
status_code=500, |
|
detail=f"Failed to analyze report: {str(e)}" |
|
) |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |