TxAgent-Api / app.py
Ali2206's picture
Update app.py
8dff938 verified
raw
history blame
7.46 kB
import os
import sys
import json
import logging
import re
from datetime import datetime
from typing import List, Dict, Optional
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import asyncio
from txagent.txagent import TxAgent
from db.mongo import get_mongo_client
# Logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("TxAgentAPI")
# App
app = FastAPI(title="TxAgent API", version="2.1.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], allow_credentials=True,
allow_methods=["*"], allow_headers=["*"]
)
# Pydantic
class ChatRequest(BaseModel):
message: str
temperature: float = 0.7
max_new_tokens: int = 512
history: Optional[List[Dict]] = None
format: Optional[str] = "clean"
# Globals
agent = None
patients_collection = None
analysis_collection = None
# Helpers
def clean_text_response(text: str) -> str:
text = re.sub(r'\n\s*\n', '\n\n', text)
text = re.sub(r'[ ]+', ' ', text)
return text.replace("**", "").replace("__", "").strip()
def extract_section(text: str, heading: str) -> str:
try:
pattern = rf"{re.escape(heading)}:\s*\n(.*?)(?=\n[A-Z][^\n]*:|\Z)"
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
return match.group(1).strip() if match else ""
except Exception as e:
logger.error(f"Section extraction failed for heading '{heading}': {e}")
return ""
def structure_medical_response(text: str) -> Dict:
"""Improved version that handles both markdown and plain text formats"""
def extract_improved(text: str, heading: str) -> str:
# Try multiple patterns to match different heading formats
patterns = [
rf"{re.escape(heading)}:\s*\n(.*?)(?=\n\s*\n|\Z)", # Heading followed by content until double newline
rf"\*\*{re.escape(heading)}\*\*:\s*\n(.*?)(?=\n\s*\n|\Z)", # Markdown bold heading
rf"{re.escape(heading)}[\s\-]+(.*?)(?=\n\s*\n|\Z)", # Heading with dashes
rf"\n{re.escape(heading)}\s*\n(.*?)(?=\n\s*\n|\Z)" # Heading on its own line
]
for pattern in patterns:
match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
if match:
content = match.group(1).strip()
# Clean up any remaining markdown or special characters
content = re.sub(r'^\s*[\-\*]\s*', '', content, flags=re.MULTILINE)
return content
return ""
# Normalize the text first
text = text.replace('**', '').replace('__', '')
return {
"summary": extract_improved(text, "Summary of Patient's Medical History") or
extract_improved(text, "Summarize the patient's medical history"),
"risks": extract_improved(text, "Identify Risks or Red Flags") or
extract_improved(text, "Risks or Red Flags"),
"missed_issues": extract_improved(text, "Missed Diagnoses or Treatments") or
extract_improved(text, "What the doctor might have missed"),
"recommendations": extract_improved(text, "Suggest Next Clinical Steps") or
extract_improved(text, "Suggested Clinical Actions")
}
def serialize_patient(patient: dict) -> dict:
patient_copy = patient.copy()
if "_id" in patient_copy:
patient_copy["_id"] = str(patient_copy["_id"])
return patient_copy
async def analyze_patient(patient: dict):
try:
serialized = serialize_patient(patient)
doc = json.dumps(serialized, indent=2)
logger.info(f"🧾 Analyzing patient: {serialized.get('fhir_id')}")
logger.debug(f"🧠 Data passed to TxAgent:\n{doc[:1000]}")
message = (
"You are a clinical decision support AI.\n\n"
"Given the patient document below:\n"
"1. Summarize the patient's medical history.\n"
"2. Identify risks or red flags.\n"
"3. Highlight missed diagnoses or treatments.\n"
"4. Suggest next clinical steps.\n"
f"\nPatient Document:\n{'-'*40}\n{doc[:10000]}"
)
raw = agent.chat(message=message, history=[], temperature=0.7, max_new_tokens=1024)
structured = structure_medical_response(raw)
analysis_doc = {
"patient_id": serialized.get("fhir_id"),
"timestamp": datetime.utcnow(),
"summary": structured,
"raw": raw
}
await analysis_collection.update_one(
{"patient_id": serialized.get("fhir_id")},
{"$set": analysis_doc},
upsert=True
)
logger.info(f"✅ Stored analysis for patient {serialized.get('fhir_id')}")
except Exception as e:
logger.error(f"Error analyzing patient: {e}")
async def analyze_all_patients():
patients = await patients_collection.find({}).to_list(length=None)
for patient in patients:
await analyze_patient(patient)
await asyncio.sleep(0.1)
@app.on_event("startup")
async def startup_event():
global agent, patients_collection, analysis_collection
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
enable_finish=True,
enable_rag=False,
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=42
)
agent.chat_prompt = (
"You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations."
)
agent.init_model()
logger.info("✅ TxAgent initialized")
db = get_mongo_client()["cps_db"]
patients_collection = db["patients"]
analysis_collection = db["patient_analysis_results"]
logger.info("📡 Connected to MongoDB")
asyncio.create_task(analyze_all_patients())
@app.get("/status")
async def status():
return {
"status": "running",
"timestamp": datetime.utcnow().isoformat()
}
@app.post("/chat-stream")
async def chat_stream_endpoint(request: ChatRequest):
async def token_stream():
try:
conversation = [{"role": "system", "content": agent.chat_prompt}]
if request.history:
conversation.extend(request.history)
conversation.append({"role": "user", "content": request.message})
input_ids = agent.tokenizer.apply_chat_template(
conversation, add_generation_prompt=True, return_tensors="pt"
).to(agent.device)
output = agent.model.generate(
input_ids,
do_sample=True,
temperature=request.temperature,
max_new_tokens=request.max_new_tokens,
pad_token_id=agent.tokenizer.eos_token_id,
return_dict_in_generate=True
)
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
for chunk in text.split():
yield chunk + " "
await asyncio.sleep(0.05)
except Exception as e:
logger.error(f"Streaming error: {e}")
yield f"⚠️ Error: {e}"
return StreamingResponse(token_stream(), media_type="text/plain")