File size: 31,399 Bytes
bec4ef1
038b1ff
a8d2446
8ad3da4
534b887
3d8532a
a8d2446
d36071e
a8d2446
 
 
d36071e
3d8532a
 
 
 
038b1ff
 
 
 
 
8da9f69
534b887
 
 
 
 
 
 
2844d78
534b887
 
 
 
 
 
 
 
 
 
 
 
bec4ef1
d36071e
 
 
 
3d8532a
d36071e
 
 
 
038b1ff
d36071e
 
 
 
 
 
 
3d8532a
a8d2446
d36071e
 
 
 
 
 
 
 
 
 
 
 
 
6c3d40b
3d8532a
6c3d40b
d36071e
 
 
 
a8d2446
 
3d8532a
d36071e
 
038b1ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36071e
 
 
 
 
3d8532a
d36071e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad3da4
 
 
2844d78
8ad3da4
 
2844d78
8ad3da4
 
 
 
 
 
 
2844d78
 
 
 
 
 
 
 
 
8ad3da4
 
 
d36071e
 
8ad3da4
 
2844d78
 
 
 
 
 
 
 
 
8ad3da4
d36071e
3d8532a
d36071e
 
 
 
8ad3da4
 
 
 
 
 
2844d78
 
8ad3da4
 
 
2844d78
8ad3da4
 
 
 
 
 
 
 
 
 
7a45ee2
 
 
 
 
 
bec4ef1
7a45ee2
ee631af
7a45ee2
 
 
bec4ef1
7a45ee2
 
bec4ef1
 
7a45ee2
 
 
 
 
 
 
bec4ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36071e
 
 
 
 
 
3d8532a
d36071e
 
 
 
 
 
 
a8d2446
d36071e
 
 
3d8532a
d36071e
 
 
 
 
 
 
3d8532a
d36071e
 
 
 
 
 
 
 
 
 
 
a8d2446
d36071e
 
 
3d8532a
d36071e
 
 
 
 
 
 
 
 
 
3d8532a
d36071e
 
 
 
 
 
 
 
 
 
 
 
 
2844d78
8ad3da4
 
 
 
 
 
 
 
 
 
2844d78
 
 
 
 
 
 
 
8ad3da4
a8d2446
 
 
d36071e
a8d2446
 
d36071e
 
 
3d8532a
d36071e
 
 
 
 
 
 
 
 
 
3d8532a
d36071e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d2446
ee631af
a8d2446
7a45ee2
ee631af
 
 
7a45ee2
 
ee631af
7a45ee2
 
ee631af
bec4ef1
7a45ee2
 
 
ee631af
 
7a45ee2
d36071e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d8532a
a8d2446
d36071e
 
a8d2446
 
8988cde
 
 
6c3d40b
 
3d8532a
6c3d40b
3d8532a
8988cde
 
 
6c3d40b
3d8532a
8988cde
 
6c3d40b
8ad3da4
8988cde
2844d78
8ad3da4
531f982
3d8532a
8988cde
3d8532a
6c3d40b
8ad3da4
6c3d40b
 
 
 
3d8532a
8988cde
6c3d40b
d36071e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
from fastapi import APIRouter, Depends, HTTPException, UploadFile, File, Query, Form, Path
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse
from fastapi.encoders import jsonable_encoder
from typing import Optional, List
from pydantic import BaseModel
from auth import get_current_user
from utils import clean_text_response
from analysis import analyze_patient_report
from voice import recognize_speech, text_to_speech, extract_text_from_pdf
from docx import Document
import re
import io
from datetime import datetime
from bson import ObjectId
import asyncio
from bson.errors import InvalidId
import base64
import os
from pathlib import Path as PathLib
import tempfile
import subprocess

# Define the ChatRequest model with an optional patient_id
class ChatRequest(BaseModel):
    message: str
    history: Optional[List[dict]] = None
    format: Optional[str] = "clean"
    temperature: Optional[float] = 0.7
    max_new_tokens: Optional[int] = 512
    patient_id: Optional[str] = None

class VoiceOutputRequest(BaseModel):
    text: str
    language: str = "en-US"
    slow: bool = False
    return_format: str = "mp3"

class RiskLevel(BaseModel):
    level: str
    score: float
    factors: Optional[List[str]] = None

def create_router(agent, logger, patients_collection, analysis_collection, users_collection, chats_collection, notifications_collection):
    router = APIRouter()

    @router.get("/status")
    async def status(current_user: dict = Depends(get_current_user)):
        logger.info(f"Status endpoint accessed by {current_user['email']}")
        return {
            "status": "running",
            "timestamp": datetime.utcnow().isoformat(),
            "version": "2.6.0",
            "features": ["chat", "voice-input", "voice-output", "patient-analysis", "report-upload", "patient-reports-pdf", "all-patients-reports-pdf"]
        }

    @router.get("/patients/analysis-results")
    async def get_patient_analysis_results(
        name: Optional[str] = Query(None),
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Fetching analysis results by {current_user['email']}")
        try:
            query = {}
            if name:
                name_regex = re.compile(name, re.IGNORECASE)
                matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None)
                patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p]
                if not patient_ids:
                    return []
                query = {"patient_id": {"$in": patient_ids}}

            analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100)
            enriched_results = []
            for analysis in analyses:
                patient = await patients_collection.find_one({"fhir_id": analysis.get("patient_id")})
                if not patient:
                    continue  # Skip if patient no longer exists
                analysis["full_name"] = patient.get("full_name", "Unknown")
                analysis["_id"] = str(analysis["_id"])
                enriched_results.append(analysis)

            return enriched_results

        except Exception as e:
            logger.error(f"Error fetching analysis results: {e}")
            raise HTTPException(status_code=500, detail="Failed to retrieve analysis results")

    @router.get("/patients/{patient_id}/analysis-reports/pdf")
    async def get_patient_analysis_reports_pdf(
        patient_id: str = Path(..., description="The ID of the patient"),
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Generating PDF analysis reports for patient {patient_id} by {current_user['email']}")
        try:
            # Fetch patient details
            patient = await patients_collection.find_one({"fhir_id": patient_id})
            if not patient:
                raise HTTPException(status_code=404, detail="Patient not found")

            # Fetch all analyses for the patient
            analyses = await analysis_collection.find({"patient_id": patient_id}).sort("timestamp", -1).to_list(length=None)
            if not analyses:
                raise HTTPException(status_code=404, detail="No analysis reports found for this patient")

            # Creating LaTeX document
            latex_content = r"""
\documentclass[a4paper,12pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{geometry}
\geometry{margin=1in}
\usepackage{enumitem}
\usepackage{fancyhdr}
\usepackage{lastpage}
\usepackage{datetime}
\pagestyle{fancy}
\fancyhf{}
\rhead{Patient Analysis Report}
\lhead{\today}
\cfoot{Page \thepage\ of \pageref{LastPage}}
\begin{document}
"""

            # Adding patient information
            patient_name = patient.get("full_name", "Unknown")
            latex_content += f"""
\\section*{{Analysis Reports for {patient_name} (ID: {patient_id})}}
\\textbf{{Patient Name:}} {patient_name}\\\\
\\textbf{{Patient ID:}} {patient_id}\\\\
\\textbf{{Generated on:}} \\today\\\\
"""

            # Adding analysis reports
            for idx, analysis in enumerate(analyses, 1):
                timestamp = analysis.get("timestamp", datetime.utcnow()).strftime("%Y-%m-%d %H:%M:%S")
                suicide_risk = analysis.get("suicide_risk", {})
                risk_level = suicide_risk.get("level", "none").capitalize()
                risk_score = suicide_risk.get("score", 0.0)
                risk_factors = ", ".join(suicide_risk.get("factors", [])) or "None"
                
                latex_content += f"""
\\subsection*{{Report {idx} - {timestamp}}}
\\begin{{description}}
    \\item[Risk Level:] {risk_level}
    \\item[Risk Score:] {risk_score:.2f}
    \\item[Risk Factors:] {risk_factors}
"""

                # Adding additional analysis details if available
                if analysis.get("summary"):
                    latex_content += f"    \\item[Summary:] {analysis['summary']}\n"
                if analysis.get("recommendations"):
                    recommendations = ", ".join(analysis["recommendations"]) if isinstance(analysis["recommendations"], list) else analysis["recommendations"]
                    latex_content += f"    \\item[Recommendations:] {recommendations}\n"

                latex_content += r"\end{description}\vspace{0.5cm}"

            latex_content += r"\end{document}"

            # Creating temporary directory for LaTeX compilation
            with tempfile.TemporaryDirectory() as tmpdirname:
                latex_file = PathLib(tmpdirname) / "report.tex"
                pdf_file = PathLib(tmpdirname) / "report.pdf"

                # Writing LaTeX content to file
                with open(latex_file, "w", encoding="utf-8") as f:
                    f.write(latex_content)

                # Compiling LaTeX to PDF using pdflatex
                try:
                    subprocess.run(
                        ["pdflatex", "-output-directory", tmpdirname, str(latex_file)],
                        check=True,
                        stdout=subprocess.PIPE,
                        stderr=subprocess.PIPE,
                        text=True
                    )
                except subprocess.CalledProcessError as e:
                    logger.error(f"LaTeX compilation failed: {e.stderr}")
                    raise HTTPException(status_code=500, detail="Failed to generate PDF report")

                if not pdf_file.exists():
                    raise HTTPException(status_code=500, detail="PDF generation failed")

                # Reading the generated PDF
                with open(pdf_file, "rb") as f:
                    pdf_content = f.read()

                # Returning the PDF as a response
                return FileResponse(
                    pdf_file,
                    media_type="application/pdf",
                    headers={"Content-Disposition": f"attachment; filename={patient_name.replace(' ', '_')}_{patient_id}_analysis_reports.pdf"}
                )

        except HTTPException:
            raise
        except Exception as e:
            logger.error(f"Error generating PDF report for patient {patient_id}: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}")

    @router.get("/patients/analysis-reports/all/pdf")
    async def get_all_patients_analysis_reports_pdf(
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Generating PDF analysis reports for all patients by {current_user['email']}")
        try:
            # Fetch all patients
            patients = await patients_collection.find().to_list(length=None)
            if not patients:
                raise HTTPException(status_code=404, detail="No patients found")

            # Creating LaTeX document
            latex_content = r"""
\documentclass[a4paper,12pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{geometry}
\geometry{margin=1in}
\usepackage{enumitem}
\usepackage{fancyhdr}
\usepackage{lastpage}
\usepackage{datetime}
\pagestyle{fancy}
\fancyhf{}
\rhead{All Patients Analysis Reports}
\lhead{\today}
\cfoot{Page \thepage\ of \pageref{LastPage}}
\begin{document}
\section*{Analysis Reports for All Patients}
\textbf{Generated on:} \today\\\\
"""

            # Flag to track if any analyses exist
            has_analyses = False

            # Iterate through each patient
            for patient in patients:
                patient_id = patient.get("fhir_id")
                patient_name = patient.get("full_name", "Unknown")

                # Fetch all analyses for the current patient
                analyses = await analysis_collection.find({"patient_id": patient_id}).sort("timestamp", -1).to_list(length=None)
                if not analyses:
                    continue  # Skip patients with no analyses

                has_analyses = True

                # Adding patient section
                latex_content += f"""
\\section*{{Patient: {patient_name} (ID: {patient_id})}}
\\textbf{{Patient Name:}} {patient_name}\\\\
\\textbf{{Patient ID:}} {patient_id}\\\\
"""

                # Adding analysis reports for the patient
                for idx, analysis in enumerate(analyses, 1):
                    timestamp = analysis.get("timestamp", datetime.utcnow()).strftime("%Y-%m-%d %H:%M:%S")
                    suicide_risk = analysis.get("suicide_risk", {})
                    risk_level = suicide_risk.get("level", "none").capitalize()
                    risk_score = suicide_risk.get("score", 0.0)
                    risk_factors = ", ".join(suicide_risk.get("factors", [])) or "None"

                    latex_content += f"""
\\subsection*{{Report {idx} - {timestamp}}}
\\begin{{description}}
    \\item[Risk Level:] {risk_level}
    \\item[Risk Score:] {risk_score:.2f}
    \\item[Risk Factors:] {risk_factors}
"""

                    # Adding additional analysis details if available
                    if analysis.get("summary"):
                        latex_content += f"    \\item[Summary:] {analysis['summary']}\n"
                    if analysis.get("recommendations"):
                        recommendations = ", ".join(analysis["recommendations"]) if isinstance(analysis["recommendations"], list) else analysis["recommendations"]
                        latex_content += f"    \\item[Recommendations:] {recommendations}\n"

                    latex_content += r"\end{description}\vspace{0.5cm}"

            latex_content += r"\end{document}"

            if not has_analyses:
                raise HTTPException(status_code=404, detail="No analysis reports found for any patients")

            # Creating temporary directory for LaTeX compilation
            with tempfile.TemporaryDirectory() as tmpdirname:
                latex_file = PathLib(tmpdirname) / "all_reports.tex"
                pdf_file = PathLib(tmpdirname) / "all_reports.pdf"

                # Writing LaTeX content to file
                with open(latex_file, "w", encoding="utf-8") as f:
                    f.write(latex_content)

                # Compiling LaTeX to PDF using pdflatex
                try:
                    subprocess.run(
                        ["pdflatex", "-output-directory", tmpdirname, str(latex_file)],
                        check=True,
                        stdout=subprocess.PIPE,
                        stderr=subprocess.PIPE,
                        text=True
                    )
                except subprocess.CalledProcessError as e:
                    logger.error(f"LaTeX compilation failed: {e.stderr}")
                    raise HTTPException(status_code=500, detail="Failed to generate PDF report")

                if not pdf_file.exists():
                    raise HTTPException(status_code=500, detail="PDF generation failed")

                # Reading the generated PDF
                with open(pdf_file, "rb") as f:
                    pdf_content = f.read()

                # Returning the PDF as a response
                return FileResponse(
                    pdf_file,
                    media_type="application/pdf",
                    headers={"Content-Disposition": f"attachment; filename=all_patients_analysis_reports_{datetime.utcnow().strftime('%Y%m%d')}.pdf"}
                )

        except HTTPException:
            raise
        except Exception as e:
            logger.error(f"Error generating PDF report for all patients: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}")

    @router.post("/chat-stream")
    async def chat_stream_endpoint(
        request: ChatRequest,
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Chat stream initiated by {current_user['email']}")
        async def token_stream():
            try:
                conversation = [{"role": "system", "content": agent.chat_prompt}]
                if request.history:
                    conversation.extend(request.history)
                conversation.append({"role": "user", "content": request.message})

                input_ids = agent.tokenizer.apply_chat_template(
                    conversation, add_generation_prompt=True, return_tensors="pt"
                ).to(agent.device)

                output = agent.model.generate(
                    input_ids,
                    do_sample=True,
                    temperature=request.temperature,
                    max_new_tokens=request.max_new_tokens,
                    pad_token_id=agent.tokenizer.eos_token_id,
                    return_dict_in_generate=True
                )

                text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
                cleaned_text = clean_text_response(text)
                full_response = ""

                # Store chat session in the chats_collection
                chat_entry = {
                    "user_id": current_user["email"],
                    "patient_id": request.patient_id,
                    "message": request.message,
                    "response": cleaned_text,
                    "chat_type": "chat",
                    "timestamp": datetime.utcnow(),
                    "temperature": request.temperature,
                    "max_new_tokens": request.max_new_tokens
                }
                logger.info(f"Attempting to insert chat entry into chats_collection: {chat_entry}")
                try:
                    result = await chats_collection.insert_one(chat_entry)
                    chat_entry["_id"] = str(result.inserted_id)
                    logger.info(f"Successfully inserted chat entry with ID: {chat_entry['_id']}")
                except Exception as db_error:
                    logger.error(f"Failed to insert chat entry into chats_collection: {str(db_error)}")
                    yield f"⚠️ Error: Failed to store chat in database: {str(db_error)}"
                    return

                for chunk in cleaned_text.split():
                    full_response += chunk + " "
                    yield chunk + " "
                    await asyncio.sleep(0.05)

                # Update chat entry with full response
                try:
                    update_result = await chats_collection.update_one(
                        {"_id": result.inserted_id},
                        {"$set": {"response": full_response.strip()}}
                    )
                    logger.info(f"Updated chat entry {chat_entry['_id']}: matched {update_result.matched_count}, modified {update_result.modified_count}")
                except Exception as update_error:
                    logger.error(f"Failed to update chat entry {chat_entry['_id']}: {str(update_error)}")
                    yield f"⚠️ Warning: Chat streamed successfully, but failed to update in database: {str(update_error)}"

            except Exception as e:
                logger.error(f"Streaming error: {e}")
                yield f"⚠️ Error: {e}"

        return StreamingResponse(token_stream(), media_type="text/plain")

    @router.get("/chats")
    async def get_chats(
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Fetching chats for {current_user['email']}")
        try:
            chats = await chats_collection.find({"user_id": current_user["email"], "chat_type": "chat"}).sort("timestamp", -1).to_list(length=100)
            logger.info(f"Retrieved {len(chats)} chats for {current_user['email']}")
            return [
                {
                    "id": str(chat["_id"]),
                    "title": chat.get("message", "Untitled Chat")[:30],
                    "timestamp": chat["timestamp"].isoformat(),
                    "message": chat["message"],
                    "response": chat["response"]
                }
                for chat in chats
            ]
        except Exception as e:
            logger.error(f"Error fetching chats: {e}")
            raise HTTPException(status_code=500, detail="Failed to retrieve chats")

    @router.get("/notifications")
    async def get_notifications(
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Fetching notifications for {current_user['email']}")
        try:
            # Fetch notifications for the current user
            notifications = await notifications_collection.find({"user_id": current_user["email"]}).sort("timestamp", -1).to_list(length=10)
            logger.info(f"Retrieved {len(notifications)} notifications for {current_user['email']}")
            return [
                {
                    "id": str(notification["_id"]),
                    "title": f"Alert for Patient {notification.get('patient_id', 'Unknown')}",
                    "message": notification.get("message", "No message"),
                    "timestamp": notification.get("timestamp", datetime.utcnow()).isoformat(),
                    "severity": notification.get("severity", "info"),
                    "read": notification.get("read", False)
                }
                for notification in notifications
            ]
        except Exception as e:
            logger.error(f"Error fetching notifications: {e}")
            raise HTTPException(status_code=500, detail="Failed to retrieve notifications")

    @router.post("/notifications/{notification_id}/read")
    async def mark_notification_as_read(
        notification_id: str = Path(..., description="The ID of the notification to mark as read"),
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Marking notification {notification_id} as read for {current_user['email']}")
        try:
            result = await notifications_collection.update_one(
                {"_id": ObjectId(notification_id), "user_id": current_user["email"]},
                {"$set": {"read": True}}
            )
            if result.matched_count == 0:
                raise HTTPException(status_code=404, detail="Notification not found or not authorized")
            return {"status": "success", "message": "Notification marked as read"}
        except InvalidId:
            raise HTTPException(status_code=400, detail="Invalid notification ID format")
        except Exception as e:
            logger.error(f"Error marking notification as read: {e}")
            raise HTTPException(status_code=500, detail="Failed to mark notification as read")

    @router.post("/notifications/read-all")
    async def mark_all_notifications_as_read(
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Marking all notifications as read for {current_user['email']}")
        try:
            result = await notifications_collection.update_many(
                {"user_id": current_user["email"], "read": False},
                {"$set": {"read": True}}
            )
            if result.matched_count == 0:
                logger.info("No unread notifications to mark as read")
            return {"status": "success", "message": f"Marked {result.modified_count} notifications as read"}
        except Exception as e:
            logger.error(f"Error marking all notifications as read: {e}")
            raise HTTPException(status_code=500, detail="Failed to mark all notifications as read")

    @router.post("/voice/transcribe")
    async def transcribe_voice(
        audio: UploadFile = File(...),
        language: str = Query("en-US", description="Language code for speech recognition"),
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Voice transcription initiated by {current_user['email']}")
        try:
            audio_data = await audio.read()
            if not audio.filename.lower().endswith(('.wav', '.mp3', '.ogg', '.flac')):
                raise HTTPException(status_code=400, detail="Unsupported audio format")
            
            text = recognize_speech(audio_data, language)
            return {"text": text}
        
        except HTTPException:
            raise
        except Exception as e:
            logger.error(f"Error in voice transcription: {e}")
            raise HTTPException(status_code=500, detail="Error processing voice input")

    @router.post("/voice/synthesize")
    async def synthesize_voice(
        request: VoiceOutputRequest,
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Voice synthesis initiated by {current_user['email']}")
        try:
            audio_data = text_to_speech(request.text, request.language, request.slow)
            
            if request.return_format == "base64":
                return {"audio": base64.b64encode(audio_data).decode('utf-8')}
            else:
                return StreamingResponse(
                    io.BytesIO(audio_data),
                    media_type="audio/mpeg",
                    headers={"Content-Disposition": "attachment; filename=speech.mp3"}
                )
        
        except HTTPException:
            raise
        except Exception as e:
            logger.error(f"Error in voice synthesis: {e}")
            raise HTTPException(status_code=500, detail="Error generating voice output")

    @router.post("/voice/chat")
    async def voice_chat_endpoint(
        audio: UploadFile = File(...),
        language: str = Query("en-US", description="Language code for speech recognition"),
        temperature: float = Query(0.7, ge=0.1, le=1.0),
        max_new_tokens: int = Query(512, ge=50, le=1024),
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Voice chat initiated by {current_user['email']}")
        try:
            audio_data = await audio.read()
            user_message = recognize_speech(audio_data, language)
            
            chat_response = agent.chat(
                message=user_message,
                history=[],
                temperature=temperature,
                max_new_tokens=max_new_tokens
            )
            
            audio_data = text_to_speech(chat_response, language.split('-')[0])
            
            # Store voice chat in the chats_collection
            chat_entry = {
                "user_id": current_user["email"],
                "patient_id": None,
                "message": user_message,
                "response": chat_response,
                "chat_type": "voice_chat",
                "timestamp": datetime.utcnow(),
                "temperature": temperature,
                "max_new_tokens": max_new_tokens
            }
            logger.info(f"Attempting to insert voice chat entry into chats_collection: {chat_entry}")
            try:
                result = await chats_collection.insert_one(chat_entry)
                chat_entry["_id"] = str(result.inserted_id)
                logger.info(f"Successfully inserted voice chat entry with ID: {chat_entry['_id']}")
            except Exception as db_error:
                logger.error(f"Failed to insert voice chat entry into chats_collection: {str(db_error)}")
                raise HTTPException(status_code=500, detail=f"Failed to store voice chat: {str(db_error)}")

            return StreamingResponse(
                io.BytesIO(audio_data),
                media_type="audio/mpeg",
                headers={"Content-Disposition": "attachment; filename=response.mp3"}
            )
        
        except HTTPException:
            raise
        except Exception as e:
            logger.error(f"Error in voice chat: {e}")
            raise HTTPException(status_code=500, detail="Error processing voice chat")

    @router.post("/analyze-report")
    async def analyze_clinical_report(
        file: UploadFile = File(...),
        patient_id: Optional[str] = Form(None),
        temperature: float = Form(0.5),
        max_new_tokens: int = Form(1024),
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Report analysis initiated by {current_user['email']}")
        try:
            content_type = file.content_type
            allowed_types = [
                'application/pdf',
                'text/plain',
                'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
            ]

            if content_type not in allowed_types:
                raise HTTPException(
                    status_code=400,
                    detail=f"Unsupported file type: {content_type}. Supported types: PDF, TXT, DOCX"
                )

            file_content = await file.read()

            if content_type == 'application/pdf':
                text = extract_text_from_pdf(file_content)
            elif content_type == 'text/plain':
                text = file_content.decode('utf-8')
            elif content_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
                doc = Document(io.BytesIO(file_content))
                text = "\n".join([para.text for para in doc.paragraphs])
            else:
                raise HTTPException(status_code=400, detail="Unsupported file type")

            text = clean_text_response(text)
            if len(text.strip()) < 50:
                raise HTTPException(
                    status_code=400,
                    detail="Extracted text is too short (minimum 50 characters required)"
                )

            analysis = await analyze_patient_report(
                patient_id=patient_id,
                report_content=text,
                file_type=content_type,
                file_content=file_content
            )
            logger.info(f"Analysis result for patient {patient_id}: {analysis}")

            # Create a notification if suicide risk is detected
            suicide_risk = analysis.get("suicide_risk", {})
            logger.info(f"Suicide risk detected: {suicide_risk}")
            if suicide_risk.get("level") != "none":
                notification = {
                    "user_id": current_user["email"],
                    "message": f"Suicide risk alert for patient {patient_id}: {suicide_risk['level'].upper()} (Score: {suicide_risk['score']})",
                    "patient_id": patient_id,
                    "timestamp": datetime.utcnow(),
                    "severity": "high" if suicide_risk["level"] in ["moderate", "severe"] else "medium",
                    "read": False
                }
                await notifications_collection.insert_one(notification)
                logger.info(f"✅ Created notification for suicide risk alert: {notification}")
            else:
                logger.warning(f"No suicide risk detected for patient {patient_id}, no notification created")

            if "_id" in analysis and isinstance(analysis["_id"], ObjectId):
                analysis["_id"] = str(analysis["_id"])
            if "timestamp" in analysis and isinstance(analysis["timestamp"], datetime):
                analysis["timestamp"] = analysis["timestamp"].isoformat()

            return JSONResponse(content=jsonable_encoder({
                "status": "success",
                "analysis": analysis,
                "patient_id": patient_id,
                "file_type": content_type,
                "file_size": len(file_content)
            }))

        except HTTPException:
            raise
        except Exception as e:
            logger.error(f"Error in report analysis: {str(e)}")
            raise HTTPException(
                status_code=500,
                detail=f"Failed to analyze report: {str(e)}"
            )

    @router.delete("/patients/{patient_id}")
    async def delete_patient(
        patient_id: str,
        current_user: dict = Depends(get_current_user)
    ):
        logger.info(f"Patient deletion initiated by {current_user['email']} for patient {patient_id}")
        try:
            # Check if the patient exists
            patient = await patients_collection.find_one({"fhir_id": patient_id})
            if not patient:
                raise HTTPException(status_code=404, detail="Patient not found")

            # Check if the current user is authorized (e.g., created_by matches or is admin)
            if patient.get("created_by") != current_user["email"] and not current_user.get("is_admin", False):
                raise HTTPException(status_code=403, detail="Not authorized to delete this patient")

            # Delete all analyses and chats associated with this patient
            await analysis_collection.delete_many({"patient_id": patient_id})
            await chats_collection.delete_many({"patient_id": patient_id})
            logger.info(f"Deleted analyses and chats for patient {patient_id}")

            # Delete the patient
            await patients_collection.delete_one({"fhir_id": patient_id})
            logger.info(f"Patient {patient_id} deleted successfully")

            return {"status": "success", "message": f"Patient {patient_id} and associated analyses/chats deleted"}

        except HTTPException:
            raise
        except Exception as e:
            logger.error(f"Error deleting patient {patient_id}: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Failed to delete patient: {str(e)}")

    return router