File size: 31,399 Bytes
bec4ef1 038b1ff a8d2446 8ad3da4 534b887 3d8532a a8d2446 d36071e a8d2446 d36071e 3d8532a 038b1ff 8da9f69 534b887 2844d78 534b887 bec4ef1 d36071e 3d8532a d36071e 038b1ff d36071e 3d8532a a8d2446 d36071e 6c3d40b 3d8532a 6c3d40b d36071e a8d2446 3d8532a d36071e 038b1ff d36071e 3d8532a d36071e 8ad3da4 2844d78 8ad3da4 2844d78 8ad3da4 2844d78 8ad3da4 d36071e 8ad3da4 2844d78 8ad3da4 d36071e 3d8532a d36071e 8ad3da4 2844d78 8ad3da4 2844d78 8ad3da4 7a45ee2 bec4ef1 7a45ee2 ee631af 7a45ee2 bec4ef1 7a45ee2 bec4ef1 7a45ee2 bec4ef1 d36071e 3d8532a d36071e a8d2446 d36071e 3d8532a d36071e 3d8532a d36071e a8d2446 d36071e 3d8532a d36071e 3d8532a d36071e 2844d78 8ad3da4 2844d78 8ad3da4 a8d2446 d36071e a8d2446 d36071e 3d8532a d36071e 3d8532a d36071e a8d2446 ee631af a8d2446 7a45ee2 ee631af 7a45ee2 ee631af 7a45ee2 ee631af bec4ef1 7a45ee2 ee631af 7a45ee2 d36071e 3d8532a a8d2446 d36071e a8d2446 8988cde 6c3d40b 3d8532a 6c3d40b 3d8532a 8988cde 6c3d40b 3d8532a 8988cde 6c3d40b 8ad3da4 8988cde 2844d78 8ad3da4 531f982 3d8532a 8988cde 3d8532a 6c3d40b 8ad3da4 6c3d40b 3d8532a 8988cde 6c3d40b d36071e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
from fastapi import APIRouter, Depends, HTTPException, UploadFile, File, Query, Form, Path
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse
from fastapi.encoders import jsonable_encoder
from typing import Optional, List
from pydantic import BaseModel
from auth import get_current_user
from utils import clean_text_response
from analysis import analyze_patient_report
from voice import recognize_speech, text_to_speech, extract_text_from_pdf
from docx import Document
import re
import io
from datetime import datetime
from bson import ObjectId
import asyncio
from bson.errors import InvalidId
import base64
import os
from pathlib import Path as PathLib
import tempfile
import subprocess
# Define the ChatRequest model with an optional patient_id
class ChatRequest(BaseModel):
message: str
history: Optional[List[dict]] = None
format: Optional[str] = "clean"
temperature: Optional[float] = 0.7
max_new_tokens: Optional[int] = 512
patient_id: Optional[str] = None
class VoiceOutputRequest(BaseModel):
text: str
language: str = "en-US"
slow: bool = False
return_format: str = "mp3"
class RiskLevel(BaseModel):
level: str
score: float
factors: Optional[List[str]] = None
def create_router(agent, logger, patients_collection, analysis_collection, users_collection, chats_collection, notifications_collection):
router = APIRouter()
@router.get("/status")
async def status(current_user: dict = Depends(get_current_user)):
logger.info(f"Status endpoint accessed by {current_user['email']}")
return {
"status": "running",
"timestamp": datetime.utcnow().isoformat(),
"version": "2.6.0",
"features": ["chat", "voice-input", "voice-output", "patient-analysis", "report-upload", "patient-reports-pdf", "all-patients-reports-pdf"]
}
@router.get("/patients/analysis-results")
async def get_patient_analysis_results(
name: Optional[str] = Query(None),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Fetching analysis results by {current_user['email']}")
try:
query = {}
if name:
name_regex = re.compile(name, re.IGNORECASE)
matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None)
patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p]
if not patient_ids:
return []
query = {"patient_id": {"$in": patient_ids}}
analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100)
enriched_results = []
for analysis in analyses:
patient = await patients_collection.find_one({"fhir_id": analysis.get("patient_id")})
if not patient:
continue # Skip if patient no longer exists
analysis["full_name"] = patient.get("full_name", "Unknown")
analysis["_id"] = str(analysis["_id"])
enriched_results.append(analysis)
return enriched_results
except Exception as e:
logger.error(f"Error fetching analysis results: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve analysis results")
@router.get("/patients/{patient_id}/analysis-reports/pdf")
async def get_patient_analysis_reports_pdf(
patient_id: str = Path(..., description="The ID of the patient"),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Generating PDF analysis reports for patient {patient_id} by {current_user['email']}")
try:
# Fetch patient details
patient = await patients_collection.find_one({"fhir_id": patient_id})
if not patient:
raise HTTPException(status_code=404, detail="Patient not found")
# Fetch all analyses for the patient
analyses = await analysis_collection.find({"patient_id": patient_id}).sort("timestamp", -1).to_list(length=None)
if not analyses:
raise HTTPException(status_code=404, detail="No analysis reports found for this patient")
# Creating LaTeX document
latex_content = r"""
\documentclass[a4paper,12pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{geometry}
\geometry{margin=1in}
\usepackage{enumitem}
\usepackage{fancyhdr}
\usepackage{lastpage}
\usepackage{datetime}
\pagestyle{fancy}
\fancyhf{}
\rhead{Patient Analysis Report}
\lhead{\today}
\cfoot{Page \thepage\ of \pageref{LastPage}}
\begin{document}
"""
# Adding patient information
patient_name = patient.get("full_name", "Unknown")
latex_content += f"""
\\section*{{Analysis Reports for {patient_name} (ID: {patient_id})}}
\\textbf{{Patient Name:}} {patient_name}\\\\
\\textbf{{Patient ID:}} {patient_id}\\\\
\\textbf{{Generated on:}} \\today\\\\
"""
# Adding analysis reports
for idx, analysis in enumerate(analyses, 1):
timestamp = analysis.get("timestamp", datetime.utcnow()).strftime("%Y-%m-%d %H:%M:%S")
suicide_risk = analysis.get("suicide_risk", {})
risk_level = suicide_risk.get("level", "none").capitalize()
risk_score = suicide_risk.get("score", 0.0)
risk_factors = ", ".join(suicide_risk.get("factors", [])) or "None"
latex_content += f"""
\\subsection*{{Report {idx} - {timestamp}}}
\\begin{{description}}
\\item[Risk Level:] {risk_level}
\\item[Risk Score:] {risk_score:.2f}
\\item[Risk Factors:] {risk_factors}
"""
# Adding additional analysis details if available
if analysis.get("summary"):
latex_content += f" \\item[Summary:] {analysis['summary']}\n"
if analysis.get("recommendations"):
recommendations = ", ".join(analysis["recommendations"]) if isinstance(analysis["recommendations"], list) else analysis["recommendations"]
latex_content += f" \\item[Recommendations:] {recommendations}\n"
latex_content += r"\end{description}\vspace{0.5cm}"
latex_content += r"\end{document}"
# Creating temporary directory for LaTeX compilation
with tempfile.TemporaryDirectory() as tmpdirname:
latex_file = PathLib(tmpdirname) / "report.tex"
pdf_file = PathLib(tmpdirname) / "report.pdf"
# Writing LaTeX content to file
with open(latex_file, "w", encoding="utf-8") as f:
f.write(latex_content)
# Compiling LaTeX to PDF using pdflatex
try:
subprocess.run(
["pdflatex", "-output-directory", tmpdirname, str(latex_file)],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
except subprocess.CalledProcessError as e:
logger.error(f"LaTeX compilation failed: {e.stderr}")
raise HTTPException(status_code=500, detail="Failed to generate PDF report")
if not pdf_file.exists():
raise HTTPException(status_code=500, detail="PDF generation failed")
# Reading the generated PDF
with open(pdf_file, "rb") as f:
pdf_content = f.read()
# Returning the PDF as a response
return FileResponse(
pdf_file,
media_type="application/pdf",
headers={"Content-Disposition": f"attachment; filename={patient_name.replace(' ', '_')}_{patient_id}_analysis_reports.pdf"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error generating PDF report for patient {patient_id}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}")
@router.get("/patients/analysis-reports/all/pdf")
async def get_all_patients_analysis_reports_pdf(
current_user: dict = Depends(get_current_user)
):
logger.info(f"Generating PDF analysis reports for all patients by {current_user['email']}")
try:
# Fetch all patients
patients = await patients_collection.find().to_list(length=None)
if not patients:
raise HTTPException(status_code=404, detail="No patients found")
# Creating LaTeX document
latex_content = r"""
\documentclass[a4paper,12pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{geometry}
\geometry{margin=1in}
\usepackage{enumitem}
\usepackage{fancyhdr}
\usepackage{lastpage}
\usepackage{datetime}
\pagestyle{fancy}
\fancyhf{}
\rhead{All Patients Analysis Reports}
\lhead{\today}
\cfoot{Page \thepage\ of \pageref{LastPage}}
\begin{document}
\section*{Analysis Reports for All Patients}
\textbf{Generated on:} \today\\\\
"""
# Flag to track if any analyses exist
has_analyses = False
# Iterate through each patient
for patient in patients:
patient_id = patient.get("fhir_id")
patient_name = patient.get("full_name", "Unknown")
# Fetch all analyses for the current patient
analyses = await analysis_collection.find({"patient_id": patient_id}).sort("timestamp", -1).to_list(length=None)
if not analyses:
continue # Skip patients with no analyses
has_analyses = True
# Adding patient section
latex_content += f"""
\\section*{{Patient: {patient_name} (ID: {patient_id})}}
\\textbf{{Patient Name:}} {patient_name}\\\\
\\textbf{{Patient ID:}} {patient_id}\\\\
"""
# Adding analysis reports for the patient
for idx, analysis in enumerate(analyses, 1):
timestamp = analysis.get("timestamp", datetime.utcnow()).strftime("%Y-%m-%d %H:%M:%S")
suicide_risk = analysis.get("suicide_risk", {})
risk_level = suicide_risk.get("level", "none").capitalize()
risk_score = suicide_risk.get("score", 0.0)
risk_factors = ", ".join(suicide_risk.get("factors", [])) or "None"
latex_content += f"""
\\subsection*{{Report {idx} - {timestamp}}}
\\begin{{description}}
\\item[Risk Level:] {risk_level}
\\item[Risk Score:] {risk_score:.2f}
\\item[Risk Factors:] {risk_factors}
"""
# Adding additional analysis details if available
if analysis.get("summary"):
latex_content += f" \\item[Summary:] {analysis['summary']}\n"
if analysis.get("recommendations"):
recommendations = ", ".join(analysis["recommendations"]) if isinstance(analysis["recommendations"], list) else analysis["recommendations"]
latex_content += f" \\item[Recommendations:] {recommendations}\n"
latex_content += r"\end{description}\vspace{0.5cm}"
latex_content += r"\end{document}"
if not has_analyses:
raise HTTPException(status_code=404, detail="No analysis reports found for any patients")
# Creating temporary directory for LaTeX compilation
with tempfile.TemporaryDirectory() as tmpdirname:
latex_file = PathLib(tmpdirname) / "all_reports.tex"
pdf_file = PathLib(tmpdirname) / "all_reports.pdf"
# Writing LaTeX content to file
with open(latex_file, "w", encoding="utf-8") as f:
f.write(latex_content)
# Compiling LaTeX to PDF using pdflatex
try:
subprocess.run(
["pdflatex", "-output-directory", tmpdirname, str(latex_file)],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
except subprocess.CalledProcessError as e:
logger.error(f"LaTeX compilation failed: {e.stderr}")
raise HTTPException(status_code=500, detail="Failed to generate PDF report")
if not pdf_file.exists():
raise HTTPException(status_code=500, detail="PDF generation failed")
# Reading the generated PDF
with open(pdf_file, "rb") as f:
pdf_content = f.read()
# Returning the PDF as a response
return FileResponse(
pdf_file,
media_type="application/pdf",
headers={"Content-Disposition": f"attachment; filename=all_patients_analysis_reports_{datetime.utcnow().strftime('%Y%m%d')}.pdf"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error generating PDF report for all patients: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}")
@router.post("/chat-stream")
async def chat_stream_endpoint(
request: ChatRequest,
current_user: dict = Depends(get_current_user)
):
logger.info(f"Chat stream initiated by {current_user['email']}")
async def token_stream():
try:
conversation = [{"role": "system", "content": agent.chat_prompt}]
if request.history:
conversation.extend(request.history)
conversation.append({"role": "user", "content": request.message})
input_ids = agent.tokenizer.apply_chat_template(
conversation, add_generation_prompt=True, return_tensors="pt"
).to(agent.device)
output = agent.model.generate(
input_ids,
do_sample=True,
temperature=request.temperature,
max_new_tokens=request.max_new_tokens,
pad_token_id=agent.tokenizer.eos_token_id,
return_dict_in_generate=True
)
text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
cleaned_text = clean_text_response(text)
full_response = ""
# Store chat session in the chats_collection
chat_entry = {
"user_id": current_user["email"],
"patient_id": request.patient_id,
"message": request.message,
"response": cleaned_text,
"chat_type": "chat",
"timestamp": datetime.utcnow(),
"temperature": request.temperature,
"max_new_tokens": request.max_new_tokens
}
logger.info(f"Attempting to insert chat entry into chats_collection: {chat_entry}")
try:
result = await chats_collection.insert_one(chat_entry)
chat_entry["_id"] = str(result.inserted_id)
logger.info(f"Successfully inserted chat entry with ID: {chat_entry['_id']}")
except Exception as db_error:
logger.error(f"Failed to insert chat entry into chats_collection: {str(db_error)}")
yield f"⚠️ Error: Failed to store chat in database: {str(db_error)}"
return
for chunk in cleaned_text.split():
full_response += chunk + " "
yield chunk + " "
await asyncio.sleep(0.05)
# Update chat entry with full response
try:
update_result = await chats_collection.update_one(
{"_id": result.inserted_id},
{"$set": {"response": full_response.strip()}}
)
logger.info(f"Updated chat entry {chat_entry['_id']}: matched {update_result.matched_count}, modified {update_result.modified_count}")
except Exception as update_error:
logger.error(f"Failed to update chat entry {chat_entry['_id']}: {str(update_error)}")
yield f"⚠️ Warning: Chat streamed successfully, but failed to update in database: {str(update_error)}"
except Exception as e:
logger.error(f"Streaming error: {e}")
yield f"⚠️ Error: {e}"
return StreamingResponse(token_stream(), media_type="text/plain")
@router.get("/chats")
async def get_chats(
current_user: dict = Depends(get_current_user)
):
logger.info(f"Fetching chats for {current_user['email']}")
try:
chats = await chats_collection.find({"user_id": current_user["email"], "chat_type": "chat"}).sort("timestamp", -1).to_list(length=100)
logger.info(f"Retrieved {len(chats)} chats for {current_user['email']}")
return [
{
"id": str(chat["_id"]),
"title": chat.get("message", "Untitled Chat")[:30],
"timestamp": chat["timestamp"].isoformat(),
"message": chat["message"],
"response": chat["response"]
}
for chat in chats
]
except Exception as e:
logger.error(f"Error fetching chats: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve chats")
@router.get("/notifications")
async def get_notifications(
current_user: dict = Depends(get_current_user)
):
logger.info(f"Fetching notifications for {current_user['email']}")
try:
# Fetch notifications for the current user
notifications = await notifications_collection.find({"user_id": current_user["email"]}).sort("timestamp", -1).to_list(length=10)
logger.info(f"Retrieved {len(notifications)} notifications for {current_user['email']}")
return [
{
"id": str(notification["_id"]),
"title": f"Alert for Patient {notification.get('patient_id', 'Unknown')}",
"message": notification.get("message", "No message"),
"timestamp": notification.get("timestamp", datetime.utcnow()).isoformat(),
"severity": notification.get("severity", "info"),
"read": notification.get("read", False)
}
for notification in notifications
]
except Exception as e:
logger.error(f"Error fetching notifications: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve notifications")
@router.post("/notifications/{notification_id}/read")
async def mark_notification_as_read(
notification_id: str = Path(..., description="The ID of the notification to mark as read"),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Marking notification {notification_id} as read for {current_user['email']}")
try:
result = await notifications_collection.update_one(
{"_id": ObjectId(notification_id), "user_id": current_user["email"]},
{"$set": {"read": True}}
)
if result.matched_count == 0:
raise HTTPException(status_code=404, detail="Notification not found or not authorized")
return {"status": "success", "message": "Notification marked as read"}
except InvalidId:
raise HTTPException(status_code=400, detail="Invalid notification ID format")
except Exception as e:
logger.error(f"Error marking notification as read: {e}")
raise HTTPException(status_code=500, detail="Failed to mark notification as read")
@router.post("/notifications/read-all")
async def mark_all_notifications_as_read(
current_user: dict = Depends(get_current_user)
):
logger.info(f"Marking all notifications as read for {current_user['email']}")
try:
result = await notifications_collection.update_many(
{"user_id": current_user["email"], "read": False},
{"$set": {"read": True}}
)
if result.matched_count == 0:
logger.info("No unread notifications to mark as read")
return {"status": "success", "message": f"Marked {result.modified_count} notifications as read"}
except Exception as e:
logger.error(f"Error marking all notifications as read: {e}")
raise HTTPException(status_code=500, detail="Failed to mark all notifications as read")
@router.post("/voice/transcribe")
async def transcribe_voice(
audio: UploadFile = File(...),
language: str = Query("en-US", description="Language code for speech recognition"),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Voice transcription initiated by {current_user['email']}")
try:
audio_data = await audio.read()
if not audio.filename.lower().endswith(('.wav', '.mp3', '.ogg', '.flac')):
raise HTTPException(status_code=400, detail="Unsupported audio format")
text = recognize_speech(audio_data, language)
return {"text": text}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice transcription: {e}")
raise HTTPException(status_code=500, detail="Error processing voice input")
@router.post("/voice/synthesize")
async def synthesize_voice(
request: VoiceOutputRequest,
current_user: dict = Depends(get_current_user)
):
logger.info(f"Voice synthesis initiated by {current_user['email']}")
try:
audio_data = text_to_speech(request.text, request.language, request.slow)
if request.return_format == "base64":
return {"audio": base64.b64encode(audio_data).decode('utf-8')}
else:
return StreamingResponse(
io.BytesIO(audio_data),
media_type="audio/mpeg",
headers={"Content-Disposition": "attachment; filename=speech.mp3"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice synthesis: {e}")
raise HTTPException(status_code=500, detail="Error generating voice output")
@router.post("/voice/chat")
async def voice_chat_endpoint(
audio: UploadFile = File(...),
language: str = Query("en-US", description="Language code for speech recognition"),
temperature: float = Query(0.7, ge=0.1, le=1.0),
max_new_tokens: int = Query(512, ge=50, le=1024),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Voice chat initiated by {current_user['email']}")
try:
audio_data = await audio.read()
user_message = recognize_speech(audio_data, language)
chat_response = agent.chat(
message=user_message,
history=[],
temperature=temperature,
max_new_tokens=max_new_tokens
)
audio_data = text_to_speech(chat_response, language.split('-')[0])
# Store voice chat in the chats_collection
chat_entry = {
"user_id": current_user["email"],
"patient_id": None,
"message": user_message,
"response": chat_response,
"chat_type": "voice_chat",
"timestamp": datetime.utcnow(),
"temperature": temperature,
"max_new_tokens": max_new_tokens
}
logger.info(f"Attempting to insert voice chat entry into chats_collection: {chat_entry}")
try:
result = await chats_collection.insert_one(chat_entry)
chat_entry["_id"] = str(result.inserted_id)
logger.info(f"Successfully inserted voice chat entry with ID: {chat_entry['_id']}")
except Exception as db_error:
logger.error(f"Failed to insert voice chat entry into chats_collection: {str(db_error)}")
raise HTTPException(status_code=500, detail=f"Failed to store voice chat: {str(db_error)}")
return StreamingResponse(
io.BytesIO(audio_data),
media_type="audio/mpeg",
headers={"Content-Disposition": "attachment; filename=response.mp3"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice chat: {e}")
raise HTTPException(status_code=500, detail="Error processing voice chat")
@router.post("/analyze-report")
async def analyze_clinical_report(
file: UploadFile = File(...),
patient_id: Optional[str] = Form(None),
temperature: float = Form(0.5),
max_new_tokens: int = Form(1024),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Report analysis initiated by {current_user['email']}")
try:
content_type = file.content_type
allowed_types = [
'application/pdf',
'text/plain',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
]
if content_type not in allowed_types:
raise HTTPException(
status_code=400,
detail=f"Unsupported file type: {content_type}. Supported types: PDF, TXT, DOCX"
)
file_content = await file.read()
if content_type == 'application/pdf':
text = extract_text_from_pdf(file_content)
elif content_type == 'text/plain':
text = file_content.decode('utf-8')
elif content_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
doc = Document(io.BytesIO(file_content))
text = "\n".join([para.text for para in doc.paragraphs])
else:
raise HTTPException(status_code=400, detail="Unsupported file type")
text = clean_text_response(text)
if len(text.strip()) < 50:
raise HTTPException(
status_code=400,
detail="Extracted text is too short (minimum 50 characters required)"
)
analysis = await analyze_patient_report(
patient_id=patient_id,
report_content=text,
file_type=content_type,
file_content=file_content
)
logger.info(f"Analysis result for patient {patient_id}: {analysis}")
# Create a notification if suicide risk is detected
suicide_risk = analysis.get("suicide_risk", {})
logger.info(f"Suicide risk detected: {suicide_risk}")
if suicide_risk.get("level") != "none":
notification = {
"user_id": current_user["email"],
"message": f"Suicide risk alert for patient {patient_id}: {suicide_risk['level'].upper()} (Score: {suicide_risk['score']})",
"patient_id": patient_id,
"timestamp": datetime.utcnow(),
"severity": "high" if suicide_risk["level"] in ["moderate", "severe"] else "medium",
"read": False
}
await notifications_collection.insert_one(notification)
logger.info(f"✅ Created notification for suicide risk alert: {notification}")
else:
logger.warning(f"No suicide risk detected for patient {patient_id}, no notification created")
if "_id" in analysis and isinstance(analysis["_id"], ObjectId):
analysis["_id"] = str(analysis["_id"])
if "timestamp" in analysis and isinstance(analysis["timestamp"], datetime):
analysis["timestamp"] = analysis["timestamp"].isoformat()
return JSONResponse(content=jsonable_encoder({
"status": "success",
"analysis": analysis,
"patient_id": patient_id,
"file_type": content_type,
"file_size": len(file_content)
}))
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in report analysis: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Failed to analyze report: {str(e)}"
)
@router.delete("/patients/{patient_id}")
async def delete_patient(
patient_id: str,
current_user: dict = Depends(get_current_user)
):
logger.info(f"Patient deletion initiated by {current_user['email']} for patient {patient_id}")
try:
# Check if the patient exists
patient = await patients_collection.find_one({"fhir_id": patient_id})
if not patient:
raise HTTPException(status_code=404, detail="Patient not found")
# Check if the current user is authorized (e.g., created_by matches or is admin)
if patient.get("created_by") != current_user["email"] and not current_user.get("is_admin", False):
raise HTTPException(status_code=403, detail="Not authorized to delete this patient")
# Delete all analyses and chats associated with this patient
await analysis_collection.delete_many({"patient_id": patient_id})
await chats_collection.delete_many({"patient_id": patient_id})
logger.info(f"Deleted analyses and chats for patient {patient_id}")
# Delete the patient
await patients_collection.delete_one({"fhir_id": patient_id})
logger.info(f"Patient {patient_id} deleted successfully")
return {"status": "success", "message": f"Patient {patient_id} and associated analyses/chats deleted"}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error deleting patient {patient_id}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to delete patient: {str(e)}")
return router |