File size: 1,215 Bytes
90ab911
b0114f5
 
 
 
6943e92
b0114f5
 
5e32d01
b0114f5
 
 
90ab911
b0114f5
 
 
 
60dd7db
 
 
90ab911
6b182f5
90ab911
 
 
 
6b182f5
90ab911
6b182f5
90ab911
 
 
 
6b182f5
5e32d01
 
 
 
 
 
 
6b182f5
b0114f5
 
 
60dd7db
b0114f5
 
60dd7db
b0114f5
 
ce74c4f
b0114f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
FROM python:3.10-slim

# Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
ENV PYTHONPATH=/app/src
ENV HF_HOME=/data/hf_cache
ENV TRANSFORMERS_CACHE=/data/hf_cache/txagent_models
ENV MPLCONFIGDIR=/tmp/matplotlib

# Install system dependencies
RUN apt-get update && apt-get install -y \
    git \
    build-essential \
    libpoppler-cpp-dev \
    && rm -rf /var/lib/apt/lists/*

# Create and set working directory
WORKDIR /app

# Install base packages
RUN pip install --no-cache-dir \
    packaging \
    setuptools \
    wheel \
    numpy

# Install PyTorch with CUDA support (Hugging Face Spaces provides CUDA)
RUN pip install --no-cache-dir \
    torch \
    transformers \
    sentence-transformers \
    vllm

# Create necessary directories
RUN mkdir -p /data/hf_cache/txagent_models \
    /data/hf_cache/tool_cache \
    /data/hf_cache/cache \
    /data/hf_cache/reports \
    /tmp/matplotlib

# Copy requirements first to leverage Docker cache
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy application code
COPY . .

# Expose port
EXPOSE 7860

# Command to run the application
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]