File size: 7,518 Bytes
32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 32e4e6a f126604 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import sys
import os
import json
import shutil
import re
import gc
import time
from datetime import datetime
from typing import List, Tuple, Dict, Union, Optional
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import pandas as pd
import pdfplumber
import torch
import matplotlib.pyplot as plt
from fpdf import FPDF
import unicodedata
import uvicorn
# === Configuration ===
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
# Create directories if they don't exist
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
# Set environment variables
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib" # Fix for matplotlib permission issues
# Set up Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
# Import TxAgent after setting up paths
from txagent.txagent import TxAgent
# Constants
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
BATCH_SIZE = 1
PROMPT_OVERHEAD = 300
SAFE_SLEEP = 0.5
# Initialize FastAPI app
app = FastAPI(
title="Clinical Patient Support System API",
description="API for analyzing and summarizing unstructured medical files",
version="1.0.0"
)
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize agent at startup
agent = None
@app.on_event("startup")
async def startup_event():
global agent
try:
agent = init_agent()
except Exception as e:
raise RuntimeError(f"Failed to initialize agent: {str(e)}")
def init_agent() -> TxAgent:
"""Initialize and return the TxAgent instance."""
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
# Utility functions (keep your existing functions but add error handling)
def estimate_tokens(text: str) -> int:
"""Estimate the number of tokens in the given text."""
return len(text) // 4 + 1
def clean_response(text: str) -> str:
"""Clean and format the response text."""
if not text:
return ""
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
return text.strip()
def extract_text_from_excel(path: str) -> str:
"""Extract text from Excel file."""
try:
all_text = []
xls = pd.ExcelFile(path)
for sheet_name in xls.sheet_names:
try:
df = xls.parse(sheet_name).astype(str).fillna("")
except Exception:
continue
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
text_line = " | ".join(non_empty)
if len(text_line) > 15:
all_text.append(f"[{sheet_name}] {text_line}")
return "\n".join(all_text)
except Exception as e:
raise RuntimeError(f"Failed to extract text from Excel: {str(e)}")
def extract_text(file_path: str) -> str:
"""Extract text from supported file types."""
try:
if file_path.endswith(".xlsx"):
return extract_text_from_excel(file_path)
elif file_path.endswith(".csv"):
df = pd.read_csv(file_path).astype(str).fillna("")
return "\n".join(
" | ".join(cell.strip() for cell in row if cell.strip())
for _, row in df.iterrows()
if len([cell for cell in row if cell.strip()]) >= 2
)
elif file_path.endswith(".pdf"):
with pdfplumber.open(file_path) as pdf:
return "\n".join(page.extract_text() or "" for page in pdf.pages)
else:
return ""
except Exception as e:
raise RuntimeError(f"Failed to extract text from file: {str(e)}")
# API endpoints
@app.post("/analyze")
async def analyze_document(file: UploadFile = File(...)):
"""Analyze a medical document and return results."""
start_time = time.time()
try:
# Save the uploaded file temporarily
temp_path = os.path.join(file_cache_dir, file.filename)
with open(temp_path, "wb") as f:
f.write(await file.read())
extracted = extract_text(temp_path)
if not extracted:
raise HTTPException(status_code=400, detail="Could not extract text from the file")
chunks = split_text(extracted)
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
batch_results = analyze_batches(agent, batches)
valid_results = [res for res in batch_results if not res.startswith("❌")]
if not valid_results:
raise HTTPException(status_code=400, detail="No valid analysis results were generated")
final_summary = generate_final_summary(agent, "\n\n".join(valid_results))
# Generate report files
report_filename = f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
report_path = os.path.join(report_dir, f"{report_filename}.md")
with open(report_path, 'w', encoding='utf-8') as f:
f.write(f"# Final Medical Report\n\n{final_summary}")
pdf_path = generate_pdf_report_with_charts(final_summary, report_path, detailed_batches=batch_results)
# Clean up temp file
os.remove(temp_path)
return JSONResponse({
"status": "success",
"summary": final_summary,
"report_path": f"/reports/{os.path.basename(pdf_path)}",
"processing_time": f"{time.time() - start_time:.2f} seconds",
"detailed_outputs": batch_results
})
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/reports/{filename}")
async def download_report(filename: str):
"""Download a generated report."""
file_path = os.path.join(report_dir, filename)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail="Report not found")
return FileResponse(file_path, media_type='application/pdf', filename=filename)
@app.get("/status")
async def service_status():
"""Check service status."""
return {
"status": "running",
"version": "1.0.0",
"model": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"max_tokens": MAX_MODEL_TOKENS,
"supported_file_types": [".pdf", ".xlsx", ".csv"]
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |