File size: 16,913 Bytes
f126604 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import os
import json
import shutil
import re
import gc
import time
from datetime import datetime
from typing import List, Tuple, Dict, Union, Optional
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import pandas as pd
import pdfplumber
import torch
import matplotlib.pyplot as plt
from fpdf import FPDF
import unicodedata
import uvicorn
# === Configuration ===
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
BATCH_SIZE = 1
PROMPT_OVERHEAD = 300
SAFE_SLEEP = 0.5
app = FastAPI(title="Clinical Patient Support System API",
description="API for analyzing and summarizing unstructured medical files",
version="1.0.0")
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize agent at startup
agent = None
@app.on_event("startup")
async def startup_event():
global agent
agent = init_agent()
def estimate_tokens(text: str) -> int:
return len(text) // 4 + 1
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
return text.strip()
def remove_duplicate_paragraphs(text: str) -> str:
paragraphs = text.strip().split("\n\n")
seen = set()
unique_paragraphs = []
for p in paragraphs:
clean_p = p.strip()
if clean_p and clean_p not in seen:
unique_paragraphs.append(clean_p)
seen.add(clean_p)
return "\n\n".join(unique_paragraphs)
def extract_text_from_excel(path: str) -> str:
all_text = []
xls = pd.ExcelFile(path)
for sheet_name in xls.sheet_names:
try:
df = xls.parse(sheet_name).astype(str).fillna("")
except Exception:
continue
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
text_line = " | ".join(non_empty)
if len(text_line) > 15:
all_text.append(f"[{sheet_name}] {text_line}")
return "\n".join(all_text)
def extract_text_from_csv(path: str) -> str:
all_text = []
try:
df = pd.read_csv(path).astype(str).fillna("")
except Exception:
return ""
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
text_line = " | ".join(non_empty)
if len(text_line) > 15:
all_text.append(text_line)
return "\n".join(all_text)
def extract_text_from_pdf(path: str) -> str:
import logging
logging.getLogger("pdfminer").setLevel(logging.ERROR)
all_text = []
try:
with pdfplumber.open(path) as pdf:
for page in pdf.pages:
text = page.extract_text()
if text:
all_text.append(text.strip())
except Exception:
return ""
return "\n".join(all_text)
def extract_text(file_path: str) -> str:
if file_path.endswith(".xlsx"):
return extract_text_from_excel(file_path)
elif file_path.endswith(".csv"):
return extract_text_from_csv(file_path)
elif file_path.endswith(".pdf"):
return extract_text_from_pdf(file_path)
else:
return ""
def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
effective_limit = max_tokens - PROMPT_OVERHEAD
chunks, current, current_tokens = [], [], 0
for line in text.split("\n"):
tokens = estimate_tokens(line)
if current_tokens + tokens > effective_limit:
if current:
chunks.append("\n".join(current))
current, current_tokens = [line], tokens
else:
current.append(line)
current_tokens += tokens
if current:
chunks.append("\n".join(current))
return chunks
def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)]
def build_prompt(chunk: str) -> str:
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
def init_agent() -> TxAgent:
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
results = []
for batch in batches:
prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
try:
batch_response = ""
for r in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
batch_response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
batch_response += m.content
elif hasattr(r, "content"):
batch_response += r.content
results.append(clean_response(batch_response))
time.sleep(SAFE_SLEEP)
except Exception as e:
results.append(f"❌ Batch failed: {str(e)}")
time.sleep(SAFE_SLEEP * 2)
torch.cuda.empty_cache()
gc.collect()
return results
def generate_final_summary(agent, combined: str) -> str:
combined = remove_duplicate_paragraphs(combined)
final_prompt = f"""
You are an expert clinical summarizer. Analyze the following summaries carefully and generate a **single final concise structured medical report**, avoiding any repetition or redundancy.
Summaries:
{combined}
Respond with:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
Avoid repeating the same points multiple times.
""".strip()
final_response = ""
for r in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
final_response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
final_response += m.content
elif hasattr(r, "content"):
final_response += r.content
final_response = clean_response(final_response)
final_response = remove_duplicate_paragraphs(final_response)
return final_response
def remove_non_ascii(text):
return ''.join(c for c in text if ord(c) < 256)
def generate_pdf_report_with_charts(summary: str, report_path: str, detailed_batches: List[str] = None):
chart_dir = os.path.join(os.path.dirname(report_path), "charts")
os.makedirs(chart_dir, exist_ok=True)
# Prepare static data
categories = ['Diagnostics', 'Medications', 'Missed', 'Inconsistencies', 'Follow-up']
values = [4, 2, 3, 1, 5]
# === Static Charts ===
chart_paths = []
def save_chart(fig_func, filename):
path = os.path.join(chart_dir, filename)
fig_func()
plt.tight_layout()
plt.savefig(path)
plt.close()
chart_paths.append((filename.split('.')[0].replace('_', ' ').title(), path))
save_chart(lambda: plt.bar(categories, values), "bar_chart.png")
save_chart(lambda: plt.pie(values, labels=categories, autopct='%1.1f%%'), "pie_chart.png")
save_chart(lambda: plt.plot(categories, values, marker='o'), "trend_chart.png")
save_chart(lambda: plt.barh(categories, values), "horizontal_bar_chart.png")
# Radar chart
import numpy as np
labels = np.array(categories)
stats = np.array(values)
angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()
stats = np.concatenate((stats, [stats[0]]))
angles += angles[:1]
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.plot(angles, stats, marker='o')
ax.fill(angles, stats, alpha=0.25)
ax.set_yticklabels([])
ax.set_xticks(angles[:-1])
ax.set_xticklabels(labels)
ax.set_title('Radar Chart: Clinical Focus')
radar_path = os.path.join(chart_dir, "radar_chart.png")
plt.tight_layout()
plt.savefig(radar_path)
plt.close()
chart_paths.append(("Radar Chart: Clinical Focus", radar_path))
# === Dynamic Chart: Drug Frequency ===
drug_counter = {}
if detailed_batches:
for batch in detailed_batches:
lines = batch.split("\n")
for line in lines:
match = re.search(r"(?i)medication[s]?:\s*(.+)", line)
if match:
items = re.split(r"[,;]", match.group(1))
for item in items:
drug = item.strip().title()
if len(drug) > 2:
drug_counter[drug] = drug_counter.get(drug, 0) + 1
if drug_counter:
drugs, freqs = zip(*sorted(drug_counter.items(), key=lambda x: x[1], reverse=True)[:10])
plt.figure(figsize=(6, 4))
plt.bar(drugs, freqs)
plt.xticks(rotation=45, ha='right')
plt.title('Top Medications Frequency')
drug_chart_path = os.path.join(chart_dir, "drug_frequency_chart.png")
plt.tight_layout()
plt.savefig(drug_chart_path)
plt.close()
chart_paths.append(("Top Medications Frequency", drug_chart_path))
# === PDF ===
pdf_path = report_path.replace('.md', '.pdf')
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=20)
def add_section_title(pdf, title):
pdf.set_fill_color(230, 230, 230)
pdf.set_font("Arial", 'B', 14)
pdf.cell(0, 10, remove_non_ascii(title), ln=True, fill=True)
pdf.ln(3)
def add_footer(pdf):
pdf.set_y(-15)
pdf.set_font('Arial', 'I', 8)
pdf.set_text_color(150, 150, 150)
pdf.cell(0, 10, f"Page {pdf.page_no()}", align='C')
# Title Page
pdf.add_page()
pdf.set_font("Arial", 'B', 26)
pdf.set_text_color(0, 70, 140)
pdf.cell(0, 20, remove_non_ascii("Final Medical Report"), ln=True, align='C')
pdf.set_text_color(0, 0, 0)
pdf.set_font("Arial", '', 13)
pdf.cell(0, 10, datetime.now().strftime("Generated on %B %d, %Y at %H:%M"), ln=True, align='C')
pdf.ln(15)
pdf.set_font("Arial", '', 11)
pdf.set_fill_color(245, 245, 245)
pdf.multi_cell(0, 9, remove_non_ascii(
"This report contains a professional summary of clinical observations, potential inconsistencies, and follow-up recommendations based on the uploaded medical document."
), border=1, fill=True, align="J")
add_footer(pdf)
# Final Summary
pdf.add_page()
add_section_title(pdf, "Final Summary")
pdf.set_font("Arial", '', 11)
for line in summary.split("\n"):
clean_line = remove_non_ascii(line.strip())
if clean_line:
pdf.multi_cell(0, 8, txt=clean_line)
add_footer(pdf)
# Charts Section
pdf.add_page()
add_section_title(pdf, "Statistical Overview")
for title, path in chart_paths:
pdf.set_font("Arial", 'B', 12)
pdf.cell(0, 9, remove_non_ascii(title), ln=True)
pdf.image(path, w=170)
pdf.ln(6)
add_footer(pdf)
# Detailed Tool Outputs
if detailed_batches:
pdf.add_page()
add_section_title(pdf, "Detailed Tool Insights")
for idx, detail in enumerate(detailed_batches):
pdf.set_font("Arial", 'B', 12)
pdf.cell(0, 9, remove_non_ascii(f"Tool Output #{idx + 1}"), ln=True)
pdf.set_font("Arial", '', 11)
for line in remove_non_ascii(detail).split("\n"):
pdf.multi_cell(0, 8, txt=line.strip())
pdf.ln(3)
add_footer(pdf)
pdf.output(pdf_path)
return pdf_path
@app.post("/analyze", summary="Analyze medical document", response_description="Returns analysis results")
async def analyze_document(file: UploadFile = File(...)):
"""
Analyze a medical document (PDF, Excel, or CSV) and return a structured analysis.
Args:
file: The medical document to analyze (PDF, Excel, or CSV format)
Returns:
JSONResponse: Contains analysis results and report download path
"""
start_time = time.time()
try:
# Save the uploaded file temporarily
temp_path = os.path.join(file_cache_dir, file.filename)
with open(temp_path, "wb") as f:
f.write(await file.read())
extracted = extract_text(temp_path)
if not extracted:
raise HTTPException(status_code=400, detail="Could not extract text from the file")
chunks = split_text(extracted)
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
batch_results = analyze_batches(agent, batches)
all_tool_outputs = batch_results.copy()
valid = [res for res in batch_results if not res.startswith("❌")]
if not valid:
raise HTTPException(status_code=400, detail="No valid analysis results were generated")
summary = generate_final_summary(agent, "\n\n".join(valid))
# Generate report files
report_filename = f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
report_path = os.path.join(report_dir, f"{report_filename}.md")
with open(report_path, 'w', encoding='utf-8') as f:
f.write(f"# Final Medical Report\n\n{summary}")
pdf_path = generate_pdf_report_with_charts(summary, report_path, detailed_batches=all_tool_outputs)
end_time = time.time()
elapsed_time = end_time - start_time
# Clean up temp file
os.remove(temp_path)
return JSONResponse({
"status": "success",
"summary": summary,
"report_path": f"/reports/{os.path.basename(pdf_path)}",
"processing_time": f"{elapsed_time:.2f} seconds",
"detailed_outputs": all_tool_outputs
})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/reports/{filename}", response_class=FileResponse)
async def download_report(filename: str):
"""
Download a generated report PDF file.
Args:
filename: The name of the report file to download
Returns:
FileResponse: The PDF file for download
"""
file_path = os.path.join(report_dir, filename)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail="Report not found")
return FileResponse(file_path, media_type='application/pdf', filename=filename)
@app.get("/status")
async def service_status():
"""
Check the service status and version information.
Returns:
JSONResponse: Service status information
"""
return JSONResponse({
"status": "running",
"version": "1.0.0",
"model": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"max_tokens": MAX_MODEL_TOKENS,
"supported_file_types": [".pdf", ".xlsx", ".csv"]
})
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |