File size: 9,255 Bytes
a8d2446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from fastapi import Depends, HTTPException, UploadFile, File, Query, Form
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.encoders import jsonable_encoder
from config import app, agent, logger
from models import ChatRequest, VoiceOutputRequest, RiskLevel
from auth import get_current_user
from utils import clean_text_response
from analysis import analyze_patient_report, analyze_all_patients
from voice import recognize_speech, text_to_speech, extract_text_from_pdf
from docx import Document
import re
import mimetypes
from bson import ObjectId
from datetime import datetime
import asyncio

@app.get("/status")
async def status(current_user: dict = Depends(get_current_user)):
    logger.info(f"Status endpoint accessed by {current_user['email']}")
    return {
        "status": "running",
        "timestamp": datetime.utcnow().isoformat(),
        "version": "2.6.0",
        "features": ["chat", "voice-input", "voice-output", "patient-analysis", "report-upload"]
    }

@app.get("/patients/analysis-results")
async def get_patient_analysis_results(
    name: Optional[str] = Query(None),
    current_user: dict = Depends(get_current_user)
):
    logger.info(f"Fetching analysis results by {current_user['email']}")
    try:
        query = {}
        if name:
            name_regex = re.compile(name, re.IGNORECASE)
            matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None)
            patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p]
            if not patient_ids:
                return []
            query = {"patient_id": {"$in": patient_ids}}

        analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100)
        enriched_results = []
        for analysis in analyses:
            patient = await patients_collection.find_one({"fhir_id": analysis.get("patient_id")})
            if patient:
                analysis["full_name"] = patient.get("full_name", "Unknown")
            analysis["_id"] = str(analysis["_id"])
            enriched_results.append(analysis)

        return enriched_results

    except Exception as e:
        logger.error(f"Error fetching analysis results: {e}")
        raise HTTPException(status_code=500, detail="Failed to retrieve analysis results")

@app.post("/chat-stream")
async def chat_stream_endpoint(
    request: ChatRequest,
    current_user: dict = Depends(get_current_user)
):
    logger.info(f"Chat stream initiated by {current_user['email']}")
    async def token_stream():
        try:
            conversation = [{"role": "system", "content": agent.chat_prompt}]
            if request.history:
                conversation.extend(request.history)
            conversation.append({"role": "user", "content": request.message})

            input_ids = agent.tokenizer.apply_chat_template(
                conversation, add_generation_prompt=True, return_tensors="pt"
            ).to(agent.device)

            output = agent.model.generate(
                input_ids,
                do_sample=True,
                temperature=request.temperature,
                max_new_tokens=request.max_new_tokens,
                pad_token_id=agent.tokenizer.eos_token_id,
                return_dict_in_generate=True
            )

            text = agent.tokenizer.decode(output["sequences"][0][input_ids.shape[1]:], skip_special_tokens=True)
            for chunk in text.split():
                yield chunk + " "
                await asyncio.sleep(0.05)
        except Exception as e:
            logger.error(f"Streaming error: {e}")
            yield f"⚠️ Error: {e}"

    return StreamingResponse(token_stream(), media_type="text/plain")

@app.post("/voice/transcribe")
async def transcribe_voice(
    audio: UploadFile = File(...),
    language: str = Query("en-US", description="Language code for speech recognition"),
    current_user: dict = Depends(get_current_user)
):
    logger.info(f"Voice transcription initiated by {current_user['email']}")
    try:
        audio_data = await audio.read()
        if not audio.filename.lower().endswith(('.wav', '.mp3', '.ogg', '.flac')):
            raise HTTPException(status_code=400, detail="Unsupported audio format")
        
        text = recognize_speech(audio_data, language)
        return {"text": text}
    
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in voice transcription: {e}")
        raise HTTPException(status_code=500, detail="Error processing voice input")

@app.post("/voice/synthesize")
async def synthesize_voice(
    request: VoiceOutputRequest,
    current_user: dict = Depends(get_current_user)
):
    logger.info(f"Voice synthesis initiated by {current_user['email']}")
    try:
        audio_data = text_to_speech(request.text, request.language, request.slow)
        
        if request.return_format == "base64":
            return {"audio": base64.b64encode(audio_data).decode('utf-8')}
        else:
            return StreamingResponse(
                io.BytesIO(audio_data),
                media_type="audio/mpeg",
                headers={"Content-Disposition": "attachment; filename=speech.mp3"}
            )
    
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in voice synthesis: {e}")
        raise HTTPException(status_code=500, detail="Error generating voice output")

@app.post("/voice/chat")
async def voice_chat_endpoint(
    audio: UploadFile = File(...),
    language: str = Query("en-US", description="Language code for speech recognition"),
    temperature: float = Query(0.7, ge=0.1, le=1.0),
    max_new_tokens: int = Query(512, ge=50, le=1024),
    current_user: dict = Depends(get_current_user)
):
    logger.info(f"Voice chat initiated by {current_user['email']}")
    try:
        audio_data = await audio.read()
        user_message = recognize_speech(audio_data, language)
        
        chat_response = agent.chat(
            message=user_message,
            history=[],
            temperature=temperature,
            max_new_tokens=max_new_tokens
        )
        
        audio_data = text_to_speech(chat_response, language.split('-')[0])
        
        return StreamingResponse(
            io.BytesIO(audio_data),
            media_type="audio/mpeg",
            headers={"Content-Disposition": "attachment; filename=response.mp3"}
        )
    
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in voice chat: {e}")
        raise HTTPException(status_code=500, detail="Error processing voice chat")

@app.post("/analyze-report")
async def analyze_clinical_report(
    file: UploadFile = File(...),
    patient_id: Optional[str] = Form(None),
    temperature: float = Form(0.5),
    max_new_tokens: int = Form(1024),
    current_user: dict = Depends(get_current_user)
):
    logger.info(f"Report analysis initiated by {current_user['email']}")
    try:
        content_type = file.content_type
        allowed_types = [
            'application/pdf',
            'text/plain',
            'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
        ]

        if content_type not in allowed_types:
            raise HTTPException(
                status_code=400,
                detail=f"Unsupported file type: {content_type}. Supported types: PDF, TXT, DOCX"
            )

        file_content = await file.read()

        if content_type == 'application/pdf':
            text = extract_text_from_pdf(file_content)
        elif content_type == 'text/plain':
            text = file_content.decode('utf-8')
        elif content_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
            doc = Document(io.BytesIO(file_content))
            text = "\n".join([para.text for para in doc.paragraphs])
        else:
            raise HTTPException(status_code=400, detail="Unsupported file type")

        text = clean_text_response(text)
        if len(text.strip()) < 50:
            raise HTTPException(
                status_code=400,
                detail="Extracted text is too short (minimum 50 characters required)"
            )

        analysis = await analyze_patient_report(
            patient_id=patient_id,
            report_content=text,
            file_type=content_type,
            file_content=file_content
        )

        if "_id" in analysis and isinstance(analysis["_id"], ObjectId):
            analysis["_id"] = str(analysis["_id"])
        if "timestamp" in analysis and isinstance(analysis["timestamp"], datetime):
            analysis["timestamp"] = analysis["timestamp"].isoformat()

        return JSONResponse(content=jsonable_encoder({
            "status": "success",
            "analysis": analysis,
            "patient_id": patient_id,
            "file_type": content_type,
            "file_size": len(file_content)
        }))

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error in report analysis: {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=f"Failed to analyze report: {str(e)}"
        )