import sys import os import pandas as pd import pdfplumber import json import gradio as gr from typing import List from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import shutil import re import psutil import subprocess import logging import torch import gc from diskcache import Cache import time # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Persistent directory persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent # Initialize cache with 10GB limit cache = Cache(file_cache_dir, size_limit=10 * 1024**3) def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def extract_all_pages(file_path: str, progress_callback=None) -> str: try: with pdfplumber.open(file_path) as pdf: total_pages = len(pdf.pages) if total_pages == 0: logger.error("No pages found in PDF") return "" batch_size = 10 batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)] text_chunks = [""] * total_pages processed_pages = 0 def extract_batch(start: int, end: int) -> List[tuple]: results = [] with pdfplumber.open(file_path) as pdf: for idx, page in enumerate(pdf.pages[start:end], start=start): page_text = page.extract_text() or "" results.append((idx, f"=== Page {idx + 1} ===\n{page_text.strip()}")) logger.debug("Extracted page %d, text length: %d chars", idx + 1, len(page_text)) return results with ThreadPoolExecutor(max_workers=6) as executor: futures = [executor.submit(extract_batch, start, end) for start, end in batches] for future in as_completed(futures): for page_num, text in future.result(): if page_num < len(text_chunks): text_chunks[page_num] = text else: logger.warning("Page number %d out of range for text_chunks (size %d)", page_num, len(text_chunks)) processed_pages += batch_size if progress_callback: progress_callback(min(processed_pages, total_pages), total_pages) logger.info("Processed %d/%d pages", min(processed_pages, total_pages), total_pages) extracted_text = "\n\n".join(filter(None, text_chunks)) logger.info("Extracted %d pages, total length: %d chars", total_pages, len(extracted_text)) return extracted_text except Exception as e: logger.error("PDF processing error: %s", e) return f"PDF processing error: {str(e)}" def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str: try: file_h = file_hash(file_path) cache_key = f"{file_h}_{file_type}" if cache_key in cache: logger.info("Using cached extraction for %s", file_path) return cache[cache_key] if file_type == "pdf": text = extract_all_pages(file_path, progress_callback) result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) elif file_type == "csv": df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip") content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) elif file_type in ["xls", "xlsx"]: try: df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) except Exception: df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) else: result = json.dumps({"error": f"Unsupported file type: {file_type}"}) cache[cache_key] = result logger.info("Cached extraction for %s, size: %d bytes", file_path, len(result)) return result except Exception as e: logger.error("Error processing %s: %s", os.path.basename(file_path), e) return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) def log_system_usage(tag=""): try: cpu = psutil.cpu_percent(interval=1) mem = psutil.virtual_memory() logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2)) result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util) except Exception as e: logger.error("[%s] GPU/CPU monitor failed: %s", tag, e) def clean_response(text: str) -> str: text = sanitize_utf8(text) text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL) text = re.sub(r"\n{3,}", "\n\n", text) text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text) sections = {} current_section = None lines = text.splitlines() for line in lines: line = line.strip() if not line: continue section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line) if section_match: current_section = section_match.group(1) if current_section not in sections: sections[current_section] = [] continue finding_match = re.match(r"-\s*.+", line) if finding_match and current_section and not re.match(r"-\s*No issues identified", line): sections[current_section].append(line) cleaned = [] for heading, findings in sections.items(): if findings: cleaned.append(f"### {heading}\n" + "\n".join(findings)) text = "\n\n".join(cleaned).strip() logger.debug("Cleaned response length: %d chars", len(text)) return text if text else "" def summarize_findings(combined_response: str) -> str: if not combined_response or all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")): logger.info("No clinical oversights identified in analysis") return "### Summary of Clinical Oversights\nNo critical oversights identified in the provided records." sections = {} lines = combined_response.splitlines() current_section = None for line in lines: line = line.strip() if not line: continue section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line) if section_match: current_section = section_match.group(1) if current_section not in sections: sections[current_section] = [] continue finding_match = re.match(r"-\s*(.+)", line) if finding_match and current_section: sections[current_section].append(finding_match.group(1)) summary_lines = [] for heading, findings in sections.items(): if findings: summary = f"- **{heading}**: {'; '.join(findings[:2])}. Risks: {heading.lower()} may lead to adverse outcomes. Recommend: urgent review and specialist referral." summary_lines.append(summary) if not summary_lines: logger.info("No clinical oversights identified after summarization") return "### Summary of Clinical Oversights\nNo critical oversights identified." summary = "### Summary of Clinical Oversights\n" + "\n".join(summary_lines) logger.info("Summarized findings: %s", summary[:100]) return summary def init_agent(): logger.info("Initializing model...") log_system_usage("Before Load") default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=False, step_rag_num=4, seed=100, additional_default_tools=[], ) agent.init_model() log_system_usage("After Load") logger.info("Agent Ready") return agent def create_ui(agent): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("

🩺 Clinical Oversight Assistant

") chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages") final_summary = gr.Markdown(label="Summary of Clinical Oversights") file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple") msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) send_btn = gr.Button("Analyze", variant="primary") download_output = gr.File(label="Download Full Report") progress_bar = gr.Progress() prompt_template = """ Analyze the patient record excerpt for clinical oversights. Provide a concise, evidence-based summary in markdown with findings grouped under headings (e.g., 'Missed Diagnoses'). For each finding, include clinical context, risks, and recommendations. Output only markdown bullet points under headings. If no issues, state "No issues identified". Patient Record Excerpt (Chunk {0} of {1}): {chunk} """ def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()): history.append({"role": "user", "content": message}) yield history, None, "" logger.info("Starting analysis for message: %s", message[:100]) extracted = "" file_hash_value = "" if files: logger.info("Processing %d uploaded files", len(files)) def update_extraction_progress(current, total): progress(current / total, desc=f"Extracting text... Page {current}/{total}") return history, None, "" with ThreadPoolExecutor(max_workers=6) as executor: futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files] results = [sanitize_utf8(f.result()) for f in as_completed(futures)] extracted = "\n".join(results) file_hash_value = file_hash(files[0].name) if files else "" logger.info("Extraction complete for %d files", len(files)) history.append({"role": "assistant", "content": "✅ Text extraction complete."}) yield history, None, "" else: logger.warning("No files uploaded for analysis") logger.info("Extracted text length: %d chars", len(extracted)) chunk_size = 6000 chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)] logger.info("Created %d chunks", len(chunks)) combined_response = "" batch_size = 2 try: for batch_idx in range(0, len(chunks), batch_size): batch_chunks = chunks[batch_idx:batch_idx + batch_size] batch_prompts = [prompt_template.format(i + 1, len(chunks), chunk=chunk[:4000]) for i, chunk in enumerate(batch_chunks)] batch_responses = [] progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}") with ThreadPoolExecutor(max_workers=len(batch_chunks)) as executor: futures = [executor.submit(agent.run_gradio_chat, prompt, [], 0.2, 512, 2048, False, []) for prompt in batch_prompts] for future in as_completed(futures): chunk_response = "" for chunk_output in future.result(): if chunk_output is None: continue if isinstance(chunk_output, list): for m in chunk_output: if hasattr(m, 'content') and m.content: cleaned = clean_response(m.content) if cleaned and re.search(r"###\s*\w+", cleaned): chunk_response += cleaned + "\n\n" elif isinstance(chunk_output, str) and chunk_output.strip(): cleaned = clean_response(chunk_output) if cleaned and re.search(r"###\s*\w+", cleaned): chunk_response += cleaned + "\n\n" batch_responses.append(chunk_response) torch.cuda.empty_cache() gc.collect() logger.debug("Processed chunk response length: %d chars", len(chunk_response)) for chunk_idx, chunk_response in enumerate(batch_responses, batch_idx + 1): if chunk_response: combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n" else: combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n" history[-1] = {"role": "assistant", "content": combined_response.strip()} yield history, None, "" if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")): history[-1]["content"] = combined_response.strip() else: history.append({"role": "assistant", "content": "No oversights identified in the provided records."}) summary = summarize_findings(combined_response) report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None if report_path: with open(report_path, "w", encoding="utf-8") as f: f.write(combined_response + "\n\n" + summary) logger.info("Analysis complete, report saved at: %s", report_path if report_path else "None") yield history, report_path if report_path and os.path.exists(report_path) else None, summary except Exception as e: logger.error("Analysis error: %s", e) history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"}) yield history, None, f"### Summary of Clinical Oversights\nError occurred during analysis: {str(e)}" send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary]) msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary]) return demo if __name__ == "__main__": try: logger.info("Launching app...") agent = init_agent() demo = create_ui(agent) demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=[report_dir], share=False ) finally: if torch.distributed.is_initialized(): torch.distributed.destroy_process_group()