import os import sys import gradio as gr from multiprocessing import freeze_support import importlib import inspect import json # Fix path to include src sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src")) # Reload TxAgent from txagent.py import txagent.txagent importlib.reload(txagent.txagent) from txagent.txagent import TxAgent # Debug info print(">>> TxAgent loaded from:", inspect.getfile(TxAgent)) print(">>> TxAgent has run_gradio_chat:", hasattr(TxAgent, "run_gradio_chat")) # Env vars current_dir = os.path.abspath(os.path.dirname(__file__)) os.environ["MKL_THREADING_LAYER"] = "GNU" os.environ["TOKENIZERS_PARALLELISM"] = "false" # Model config model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B" rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B" new_tool_files = { "new_tool": os.path.join(current_dir, "data", "new_tool.json") } # Sample questions question_examples = [ ["Given a patient with WHIM syndrome on prophylactic antibiotics, is it advisable to co-administer Xolremdi with fluconazole?"], ["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"] ] # Helper: format assistant responses in collapsible panels def format_collapsible(content, tool_name=None): # Try parsing if it's a JSON string if isinstance(content, str): try: content = json.loads(content) except Exception: pass if isinstance(content, dict) and "results" in content: readable = "" for i, result in enumerate(content["results"], 1): readable += f"\n🔹 **Result {i}:**\n" for key, value in result.items(): key_str = key.replace("openfda.", "").replace("_", " ").capitalize() val_str = ", ".join(value) if isinstance(value, list) else str(value) readable += f"- **{key_str}**: {val_str}\n" formatted = readable.strip() elif isinstance(content, (dict, list)): formatted = json.dumps(content, indent=2) else: formatted = str(content) title = f"{tool_name or 'Answer'}" return ( "
" f"{title}" f"
{formatted}
" "
" ) # === UI setup def create_ui(agent): with gr.Blocks(css="body { background-color: #f5f5f5; font-family: sans-serif; }") as demo: gr.Markdown("

TxAgent: Therapeutic Reasoning

") gr.Markdown("

Ask biomedical or therapeutic questions. Powered by step-by-step reasoning and tools.

") conversation_state = gr.State([]) chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages") message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False) send_button = gr.Button("Send", variant="primary") # Main handler def handle_chat(message, history, conversation): generator = agent.run_gradio_chat( message=message, history=history, temperature=0.3, max_new_tokens=1024, max_token=8192, call_agent=False, conversation=conversation, max_round=30 ) for update in generator: formatted = [] for m in update: role = m["role"] if isinstance(m, dict) else getattr(m, "role", "assistant") content = m["content"] if isinstance(m, dict) else getattr(m, "content", "") tool_name = m.get("tool_name") if isinstance(m, dict) else getattr(m, "tool_name", None) if role == "assistant": content = format_collapsible(content, tool_name) formatted.append({"role": role, "content": content}) yield formatted inputs = [message_input, chatbot, conversation_state] send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot) message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot) gr.Examples(examples=question_examples, inputs=message_input) gr.Markdown("

This demo is for research purposes only and does not provide medical advice.

") return demo # === Entry point if __name__ == "__main__": freeze_support() try: agent = TxAgent( model_name=model_name, rag_model_name=rag_model_name, tool_files_dict=new_tool_files, force_finish=True, enable_checker=True, step_rag_num=10, seed=100, additional_default_tools=[] ) agent.init_model() if not hasattr(agent, "run_gradio_chat"): raise AttributeError("TxAgent missing run_gradio_chat") demo = create_ui(agent) demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True) except Exception as e: print(f"\u274c App failed to start: {e}") raise