import sys import os import pandas as pd import json import gradio as gr from typing import List, Tuple, Dict, Any, Union import hashlib import shutil import re from datetime import datetime import time from concurrent.futures import ThreadPoolExecutor, as_completed # Configuration and setup persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent # Constants MAX_MODEL_TOKENS = 32768 MAX_CHUNK_TOKENS = 8192 MAX_NEW_TOKENS = 2048 PROMPT_OVERHEAD = 500 def clean_response(text: str) -> str: try: text = text.encode('utf-8', 'surrogatepass').decode('utf-8') except UnicodeError: text = text.encode('utf-8', 'replace').decode('utf-8') text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) text = re.sub(r"\n{3,}", "\n\n", text) text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) return text.strip() def estimate_tokens(text: str) -> int: return len(text) // 3.5 + 1 def extract_text_from_excel(file_path: str) -> str: all_text = [] try: xls = pd.ExcelFile(file_path) for sheet_name in xls.sheet_names: df = xls.parse(sheet_name) df = df.astype(str).fillna("") rows = df.apply(lambda row: " | ".join(row), axis=1) sheet_text = [f"[{sheet_name}] {line}" for line in rows] all_text.extend(sheet_text) except Exception as e: raise ValueError(f"Failed to extract text from Excel file: {str(e)}") return "\n".join(all_text) def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]: effective_max_tokens = max_tokens - PROMPT_OVERHEAD if effective_max_tokens <= 0: raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.") lines = text.split("\n") chunks, current_chunk, current_tokens = [], [], 0 for line in lines: line_tokens = estimate_tokens(line) if current_tokens + line_tokens > effective_max_tokens: if current_chunk: chunks.append("\n".join(current_chunk)) current_chunk, current_tokens = [line], line_tokens else: current_chunk.append(line) current_tokens += line_tokens if current_chunk: chunks.append("\n".join(current_chunk)) return chunks def build_prompt_from_text(chunk: str) -> str: return f""" ### Unstructured Clinical Records You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets. **Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps. Here is the extracted content chunk: {chunk} Please analyze the above and provide: - Diagnostic Patterns - Medication Issues - Missed Opportunities - Inconsistencies - Follow-up Recommendations """ def init_agent(): default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=True, step_rag_num=4, seed=100, additional_default_tools=[] ) agent.init_model() return agent def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]: messages = chatbot_state if chatbot_state else [] report_path = None if file is None or not hasattr(file, "name"): messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."}) return messages, report_path try: messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"}) messages.append({"role": "assistant", "content": "⏳ Extracting and analyzing data..."}) extracted_text = extract_text_from_excel(file.name) chunks = split_text_into_chunks(extracted_text) chunk_responses = [None] * len(chunks) def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]: prompt = build_prompt_from_text(chunk) prompt_tokens = estimate_tokens(prompt) if prompt_tokens > MAX_MODEL_TOKENS: return index, f"❌ Chunk {index+1} prompt too long ({prompt_tokens} tokens). Skipping..." response = "" try: for result in agent.run_gradio_chat( message=prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[], ): if isinstance(result, str): response += result elif hasattr(result, "content"): response += result.content elif isinstance(result, list): for r in result: if hasattr(r, "content"): response += r.content except Exception as e: return index, f"❌ Error analyzing chunk {index+1}: {str(e)}" return index, clean_response(response) with ThreadPoolExecutor(max_workers=1) as executor: futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)] for future in as_completed(futures): i, result = future.result() chunk_responses[i] = result if not result.startswith("❌"): messages.append({"role": "assistant", "content": f"✅ Chunk {i+1} analysis complete"}) else: messages.append({"role": "assistant", "content": result}) valid_responses = [res for res in chunk_responses if not res.startswith("❌")] if not valid_responses: messages.append({"role": "assistant", "content": "❌ No valid chunk responses to summarize."}) return messages, report_path summary = "" current_summary_tokens = 0 for i, response in enumerate(valid_responses): response_tokens = estimate_tokens(response) if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS: summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary." summary_response = "" try: for result in agent.run_gradio_chat( message=summary_prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[], ): if isinstance(result, str): summary_response += result elif hasattr(result, "content"): summary_response += result.content elif isinstance(result, list): for r in result: if hasattr(r, "content"): summary_response += r.content summary = clean_response(summary_response) current_summary_tokens = estimate_tokens(summary) except Exception as e: messages.append({"role": "assistant", "content": f"❌ Error summarizing intermediate results: {str(e)}"}) return messages, report_path summary += f"\n\n### Chunk {i+1} Analysis\n{response}" current_summary_tokens += response_tokens final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}" messages.append({"role": "assistant", "content": "📊 Generating final report..."}) final_report_text = "" try: for result in agent.run_gradio_chat( message=final_prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[], ): if isinstance(result, str): final_report_text += result elif hasattr(result, "content"): final_report_text += result.content elif isinstance(result, list): for r in result: if hasattr(r, "content"): final_report_text += r.content except Exception as e: messages.append({"role": "assistant", "content": f"❌ Error generating final report: {str(e)}"}) return messages, report_path final_report = f"# 🧠 Final Patient Report\n\n{clean_response(final_report_text)}" messages[-1]["content"] = f"📊 Final Report:\n\n{clean_response(final_report_text)}" timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') report_path = os.path.join(report_dir, f"report_{timestamp}.md") with open(report_path, 'w') as f: f.write(final_report) messages.append({"role": "assistant", "content": f"✅ Report generated and saved: report_{timestamp}.md"}) except Exception as e: messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"}) return messages, report_path def create_ui(agent): with gr.Blocks( title="Patient History Chat", css=""" .gradio-container { max-width: 900px !important; margin: auto; font-family: 'Segoe UI', sans-serif; background-color: #f8f9fa; } .gr-button.primary { background: linear-gradient(to right, #4b6cb7, #182848); color: white; border: none; border-radius: 8px; } .gr-button.primary:hover { background: linear-gradient(to right, #3552a3, #101a3e); } .gr-file-upload, .gr-chatbot, .gr-markdown { background-color: white; border-radius: 10px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); padding: 1rem; } .gr-chatbot { border-left: 4px solid #4b6cb7; } .gr-file-upload input { font-size: 0.95rem; } .chat-message-content p { margin: 0.3em 0; } .chat-message-content ul { padding-left: 1.2em; margin: 0.4em 0; } """ ) as demo: gr.Markdown("""

🏥 Patient History Analysis Tool

Upload an Excel file containing clinical data. The assistant will analyze it for patterns, inconsistencies, and recommendations.

""") with gr.Row(): with gr.Column(scale=3): chatbot = gr.Chatbot( label="Clinical Assistant", show_copy_button=True, height=600, type="messages", avatar_images=(None, "https://i.imgur.com/6wX7Zb4.png"), render_markdown=True ) with gr.Column(scale=1): file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"], height=100) analyze_btn = gr.Button("🧠 Analyze Patient History", variant="primary", elem_classes="primary") report_output = gr.File(label="Download Report", visible=False, interactive=False) chatbot_state = gr.State(value=[]) def update_ui(file, current_state): messages, report_path = process_final_report(agent, file, current_state) formatted_messages = [] for msg in messages: role = msg.get("role") content = msg.get("content", "") if role == "assistant": content = content.replace("- ", "\n- ") content = f"
{content}
" formatted_messages.append({"role": role, "content": content}) report_update = gr.update(visible=report_path is not None, value=report_path) return formatted_messages, report_update, formatted_messages analyze_btn.click(fn=update_ui, inputs=[file_upload, chatbot_state], outputs=[chatbot, report_output, chatbot_state], api_name="analyze") return demo if __name__ == "__main__": try: agent = init_agent() demo = create_ui(agent) demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=["/data/hf_cache/reports"], share=False) except Exception as e: print(f"Error: {str(e)}") sys.exit(1)