import sys import os import pandas as pd import json import gradio as gr from typing import List, Tuple, Dict, Any, Union import hashlib import shutil import re from datetime import datetime import time from concurrent.futures import ThreadPoolExecutor, as_completed # Configuration and setup persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent # Constants MAX_MODEL_TOKENS = 32768 MAX_CHUNK_TOKENS = 8192 MAX_NEW_TOKENS = 2048 PROMPT_OVERHEAD = 500 def clean_response(text: str) -> str: try: text = text.encode('utf-8', 'surrogatepass').decode('utf-8') except UnicodeError: text = text.encode('utf-8', 'replace').decode('utf-8') text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) text = re.sub(r"\n{3,}", "\n\n", text) text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) return text.strip() def estimate_tokens(text: str) -> int: return len(text) // 3.5 + 1 def extract_text_from_excel(file_path: str) -> str: all_text = [] try: xls = pd.ExcelFile(file_path) for sheet_name in xls.sheet_names: df = xls.parse(sheet_name) df = df.astype(str).fillna("") rows = df.apply(lambda row: " | ".join(row), axis=1) sheet_text = [f"[{sheet_name}] {line}" for line in rows] all_text.extend(sheet_text) except Exception as e: raise ValueError(f"Failed to extract text from Excel file: {str(e)}") return "\n".join(all_text) def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]: effective_max_tokens = max_tokens - PROMPT_OVERHEAD if effective_max_tokens <= 0: raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.") lines = text.split("\n") chunks, current_chunk, current_tokens = [], [], 0 for line in lines: line_tokens = estimate_tokens(line) if current_tokens + line_tokens > effective_max_tokens: if current_chunk: chunks.append("\n".join(current_chunk)) current_chunk, current_tokens = [line], line_tokens else: current_chunk.append(line) current_tokens += line_tokens if current_chunk: chunks.append("\n".join(current_chunk)) return chunks def build_prompt_from_text(chunk: str) -> str: return f""" ### Unstructured Clinical Records You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets. **Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps. Here is the extracted content chunk: {chunk} Please analyze the above and provide: - Diagnostic Patterns - Medication Issues - Missed Opportunities - Inconsistencies - Follow-up Recommendations """ def init_agent(): default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=True, step_rag_num=4, seed=100, additional_default_tools=[] ) agent.init_model() return agent def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]: messages = chatbot_state if chatbot_state else [] report_path = None if file is None or not hasattr(file, "name"): messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."}) return messages, report_path try: messages.append({"role": "user", "content": f"📄 Processing Excel file: {os.path.basename(file.name)}"}) messages.append({"role": "assistant", "content": "🔍 Analyzing clinical data... This may take a moment."}) extracted_text = extract_text_from_excel(file.name) chunks = split_text_into_chunks(extracted_text) chunk_responses = [None] * len(chunks) def analyze_chunk(index: int, chunk: str) -> Tuple[int, str]: prompt = build_prompt_from_text(chunk) prompt_tokens = estimate_tokens(prompt) if prompt_tokens > MAX_MODEL_TOKENS: return index, f"❌ Chunk {index+1} prompt too long ({prompt_tokens} tokens). Skipping..." response = "" try: for result in agent.run_gradio_chat( message=prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[], ): if isinstance(result, str): response += result elif hasattr(result, "content"): response += result.content elif isinstance(result, list): for r in result: if hasattr(r, "content"): response += r.content except Exception as e: return index, f"❌ Error analyzing chunk {index+1}: {str(e)}" return index, clean_response(response) # Process chunks silently without displaying progress with ThreadPoolExecutor(max_workers=1) as executor: futures = [executor.submit(analyze_chunk, i, chunk) for i, chunk in enumerate(chunks)] for future in as_completed(futures): i, result = future.result() chunk_responses[i] = result valid_responses = [res for res in chunk_responses if not res.startswith("❌")] if not valid_responses: messages.append({"role": "assistant", "content": "❌ No valid analysis results to summarize."}) return messages, report_path summary = "\n\n".join(valid_responses) final_prompt = f"""Please synthesize the following clinical analyses into a concise, well-structured report: {summary} Structure your response with clear sections: 1. Key Diagnostic Patterns 2. Medication Concerns 3. Potential Missed Opportunities 4. Notable Inconsistencies 5. Recommended Follow-ups Use bullet points for clarity and professional medical terminology.""" final_report_text = "" try: for result in agent.run_gradio_chat( message=final_prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[], ): if isinstance(result, str): final_report_text += result elif hasattr(result, "content"): final_report_text += result.content elif isinstance(result, list): for r in result: if hasattr(r, "content"): final_report_text += r.content except Exception as e: messages.append({"role": "assistant", "content": f"❌ Error generating final report: {str(e)}"}) return messages, report_path final_report = f"# 🧠 Clinical Analysis Report\n\n{clean_response(final_report_text)}" # Update the last message with the final report messages[-1]["content"] = f"## 📋 Clinical Analysis Report\n\n{clean_response(final_report_text)}" timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') report_path = os.path.join(report_dir, f"clinical_report_{timestamp}.md") with open(report_path, 'w') as f: f.write(final_report) messages.append({"role": "assistant", "content": f"✅ Report generated successfully. You can download it below."}) except Exception as e: messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"}) return messages, report_path def create_ui(agent): with gr.Blocks( title="Clinical Analysis Tool", css=""" .gradio-container { max-width: 900px !important; margin: auto; font-family: 'Inter', sans-serif; background-color: #f9fafb; } .gr-button.primary { background: linear-gradient(to right, #4f46e5, #7c3aed); color: white; border: none; border-radius: 8px; padding: 12px 24px; font-weight: 500; transition: all 0.2s; } .gr-button.primary:hover { background: linear-gradient(to right, #4338ca, #6d28d9); transform: translateY(-1px); box-shadow: 0 4px 6px rgba(0,0,0,0.1); } .gr-file-upload, .gr-chatbot, .gr-markdown { background-color: white; border-radius: 12px; box-shadow: 0 1px 3px rgba(0,0,0,0.05); padding: 1.5rem; border: 1px solid #e5e7eb; } .gr-chatbot { min-height: 600px; border-left: none; } .chat-message-user { background-color: #f3f4f6; border-radius: 12px; padding: 12px 16px; margin: 8px 0; } .chat-message-assistant { background-color: white; border-radius: 12px; padding: 12px 16px; margin: 8px 0; border: 1px solid #e5e7eb; } .chat-message-content ul, .chat-message-content ol { padding-left: 1.5em; margin: 0.5em 0; } .chat-message-content li { margin: 0.3em 0; } h1, h2, h3 { color: #111827; } .gr-markdown h1 { font-size: 1.8rem; margin-bottom: 1rem; font-weight: 600; } .gr-markdown p { color: #4b5563; line-height: 1.6; } .progress-bar { height: 4px; background: #e5e7eb; border-radius: 2px; margin: 12px 0; overflow: hidden; } .progress-bar-fill { height: 100%; background: linear-gradient(to right, #4f46e5, #7c3aed); transition: width 0.3s ease; } """ ) as demo: gr.Markdown("""
Upload patient records in Excel format for comprehensive clinical analysis
This tool analyzes clinical documentation to identify patterns, inconsistencies, and opportunities for improved patient care.