import sys import os import pandas as pd import pdfplumber import json import gradio as gr from typing import List, Dict, Optional, Generator from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import shutil import re import psutil import subprocess import logging import torch import gc from diskcache import Cache import time from transformers import AutoTokenizer from functools import lru_cache import numpy as np from difflib import SequenceMatcher # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Constants MAX_TOKENS = 1800 BATCH_SIZE = 2 MAX_WORKERS = 4 CHUNK_SIZE = 10 # For PDF processing # Persistent directory setup persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) os.environ.update({ "HF_HOME": model_cache_dir, "TRANSFORMERS_CACHE": model_cache_dir, "VLLM_CACHE_DIR": vllm_cache_dir, "TOKENIZERS_PARALLELISM": "false", "CUDA_LAUNCH_BLOCKING": "1" }) current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent # Initialize cache with 10GB limit cache = Cache(file_cache_dir, size_limit=10 * 1024**3) # Initialize tokenizer for precise chunking (with caching) @lru_cache(maxsize=1) def get_tokenizer(): return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B") def sanitize_utf8(text: str) -> str: """Optimized UTF-8 sanitization""" return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: """Optimized file hashing with buffer reading""" hash_md5 = hashlib.md5() with open(path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def extract_pdf_page(page) -> str: """Optimized single page extraction""" try: text = page.extract_text() or "" return f"=== Page {page.page_number} ===\n{text.strip()}" except Exception as e: logger.warning(f"Error extracting page {page.page_number}: {str(e)}") return "" def extract_all_pages(file_path: str, progress_callback=None) -> str: """Optimized PDF extraction with memory management""" try: with pdfplumber.open(file_path) as pdf: total_pages = len(pdf.pages) if total_pages == 0: return "" results = [] for chunk_start in range(0, total_pages, CHUNK_SIZE): chunk_end = min(chunk_start + CHUNK_SIZE, total_pages) with pdfplumber.open(file_path) as pdf: with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 4)) as executor: futures = [executor.submit(extract_pdf_page, pdf.pages[i]) for i in range(chunk_start, chunk_end)] for future in as_completed(futures): results.append(future.result()) if progress_callback: progress_callback(min(chunk_end, total_pages), total_pages) del pdf gc.collect() return "\n\n".join(filter(None, results)) except Exception as e: logger.error(f"PDF processing error: {e}") return f"PDF processing error: {str(e)}" def excel_to_json(file_path: str) -> List[Dict]: """Optimized Excel processing with chunking""" try: for engine in ['openpyxl', 'xlrd']: try: df = pd.read_excel( file_path, engine=engine, header=None, dtype=str, na_filter=False ) return [{ "filename": os.path.basename(file_path), "rows": df.values.tolist(), "type": "excel" }] except Exception: continue raise Exception("No suitable Excel engine found") except Exception as e: logger.error(f"Excel processing error: {e}") return [{"error": f"Excel processing error: {str(e)}"}] def csv_to_json(file_path: str) -> List[Dict]: """Optimized CSV processing with chunking""" try: chunks = [] for chunk in pd.read_csv( file_path, header=None, dtype=str, encoding_errors='replace', on_bad_lines='skip', chunksize=10000, na_filter=False ): chunks.append(chunk) df = pd.concat(chunks) if chunks else pd.DataFrame() return [{ "filename": os.path.basename(file_path), "rows": df.values.tolist(), "type": "csv" }] except Exception as e: logger.error(f"CSV processing error: {e}") return [{"error": f"CSV processing error: {str(e)}"}] @lru_cache(maxsize=100) def process_file_cached(file_path: str, file_type: str) -> List[Dict]: """Cached file processing with memory optimization""" try: if file_type == "pdf": text = extract_all_pages(file_path) return [{ "filename": os.path.basename(file_path), "content": text, "status": "initial", "type": "pdf" }] elif file_type in ["xls", "xlsx"]: return excel_to_json(file_path) elif file_type == "csv": return csv_to_json(file_path) else: return [{"error": f"Unsupported file type: {file_type}"}] except Exception as e: logger.error(f"Error processing {os.path.basename(file_path)}: {e}") return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}] def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]: """Optimized tokenization and chunking""" tokenizer = get_tokenizer() tokens = tokenizer.encode(text, add_special_tokens=False) return [ tokenizer.decode(tokens[i:i + max_tokens]) for i in range(0, len(tokens), max_tokens) ] def log_system_usage(tag=""): """Optimized system monitoring""" try: cpu = psutil.cpu_percent(interval=0.5) mem = psutil.virtual_memory() logger.info(f"[{tag}] CPU: {cpu:.1f}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") try: result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True, timeout=2 ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") except subprocess.TimeoutExpired: logger.warning(f"[{tag}] GPU monitoring timed out") except Exception as e: logger.error(f"[{tag}] Monitor failed: {e}") def clean_response(text: str) -> str: """Enhanced response cleaning with aggressive deduplication""" if not text: return "" patterns = [ (re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""), (re.compile(r"(The patient record excerpt provides|Patient record excerpt contains).*?(John Doe|general information).*?\.", re.IGNORECASE), ""), (re.compile(r"To (analyze|proceed).*?medications\.", re.IGNORECASE), ""), (re.compile(r"Since the previous attempts.*?\.", re.IGNORECASE), ""), (re.compile(r"I need to.*?results\.", re.IGNORECASE), ""), (re.compile(r"(Therefore, )?(Retrieving|I will start by retrieving) tools.*?\.", re.IGNORECASE), ""), (re.compile(r"This requires reviewing.*?\.", re.IGNORECASE), ""), (re.compile(r"Given the context, it is important to review.*?\.", re.IGNORECASE), ""), (re.compile(r"Final Analysis\s*", re.IGNORECASE), ""), (re.compile(r"Therefore, no missed diagnoses can be identified.*?\.", re.IGNORECASE), ""), (re.compile(r"\s+"), " "), (re.compile(r"[^\w\s\.\,\(\)\-]"), ""), (re.compile(r"(No missed diagnoses identified\.)\s*\1+", re.IGNORECASE), r"\1"), ] for pattern, repl in patterns: text = pattern.sub(repl, text) sentences = text.split(". ") unique_sentences = [] seen = set() for s in sentences: if not s: continue is_unique = True for seen_s in seen: if SequenceMatcher(None, s.lower(), seen_s.lower()).ratio() > 0.9: is_unique = False break if is_unique: unique_sentences.append(s) seen.add(s) text = ". ".join(unique_sentences).strip() return text if text else "No missed diagnoses identified." def summarize_findings(combined_response: str) -> str: """Enhanced findings summarization for a single, concise paragraph""" if not combined_response: return "No missed diagnoses were identified in the provided records." diagnosis_pattern = re.compile(r"-\s*(.+)$") section_pattern = re.compile(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)") no_issues_pattern = re.compile(r"No issues identified|No missed diagnoses identified", re.IGNORECASE) diagnoses = [] current_section = None for line in combined_response.splitlines(): line = line.strip() if not line: continue section_match = section_pattern.match(line) if section_match: current_section = "diagnoses" if section_match.group(1) == "Missed Diagnoses" else None continue if current_section == "diagnoses": diagnosis_match = diagnosis_pattern.match(line) if diagnosis_match and not no_issues_pattern.search(line): diagnosis = diagnosis_match.group(1).strip() if diagnosis: diagnoses.append(diagnosis) medication_pattern = re.compile(r"medications includ(?:e|ing|ed) ([^\.]+)", re.IGNORECASE) evaluation_pattern = re.compile(r"psychiatric evaluation.*?mention of ([^\.]+)", re.IGNORECASE) for line in combined_response.splitlines(): line = line.strip() if not line or no_issues_pattern.search(line): continue med_match = medication_pattern.search(line) if med_match: meds = med_match.group(1).strip() diagnoses.append(f"use of medications ({meds}), suggesting an undiagnosed psychiatric condition requiring urgent review") eval_match = evaluation_pattern.search(line) if eval_match: details = eval_match.group(1).strip() diagnoses.append(f"psychiatric evaluation noting {details}, indicating a potential missed psychiatric diagnosis requiring urgent review") if not diagnoses: return "No missed diagnoses were identified in the provided records." seen = set() unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))] summary = "The patient record indicates missed diagnoses including " summary += ", ".join(unique_diagnoses[:-1]) summary += f", and {unique_diagnoses[-1]}" if len(unique_diagnoses) > 1 else unique_diagnoses[0] summary += ". These findings suggest potential oversights in the patient's medical evaluation and require urgent clinical review to prevent adverse outcomes." return summary @lru_cache(maxsize=1) def init_agent(): """Cached agent initialization with memory optimization""" logger.info("Initializing model...") log_system_usage("Before Load") default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=False, step_rag_num=4, seed=100, additional_default_tools=[], ) agent.init_model() log_system_usage("After Load") logger.info("Agent Ready") return agent def create_ui(agent): """Optimized UI creation with pre-compiled templates""" PROMPT_TEMPLATE = """ Analyze the patient record excerpt for missed diagnoses, focusing ONLY on clinical findings such as symptoms, medications, or evaluation results provided in the excerpt. Provide a detailed, evidence-based analysis using all available tools (e.g., Tool_RAG, CallAgent) to identify potential oversights. Include specific findings (e.g., 'elevated blood pressure (160/95)'), their implications (e.g., 'may indicate untreated hypertension'), and recommend urgent review. Treat medications or psychiatric evaluations as potential missed diagnoses. Do NOT repeat non-clinical information (e.g., name, date of birth, allergies). If no clinical findings are present, state 'No missed diagnoses identified' in ONE sentence. Ignore other oversight categories (e.g., medication conflicts). Patient Record Excerpt (Chunk {0} of {1}): {chunk} """ with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("