import pdfplumber import json import gradio as gr from typing import List from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import shutil import re import psutil import subprocess import logging from datetime import datetime # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(), logging.FileHandler('clinical_oversight.log') ] ) logger = logging.getLogger(__name__) # Persistent directory persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications', 'allergies', 'summary', 'impression', 'findings', 'recommendations'} def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def extract_priority_pages(file_path: str, max_pages: int = 20) -> str: try: text_chunks = [] with pdfplumber.open(file_path) as pdf: for i, page in enumerate(pdf.pages[:3]): text = page.extract_text() or "" text_chunks.append(f"=== Page {i+1} ===\n{text.strip()}") for i, page in enumerate(pdf.pages[3:max_pages], start=4): page_text = page.extract_text() or "" if any(re.search(rf'\\b{kw}\\b', page_text.lower()) for kw in MEDICAL_KEYWORDS): text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}") return "\n\n".join(text_chunks) except Exception as e: logger.error(f"Error extracting pages from PDF: {str(e)}") return f"PDF processing error: {str(e)}" def convert_file_to_json(file_path: str, file_type: str) -> str: try: h = file_hash(file_path) cache_path = os.path.join(file_cache_dir, f"{h}.json") if os.path.exists(cache_path): with open(cache_path, "r", encoding="utf-8") as f: return f.read() if file_type == "pdf": text = extract_priority_pages(file_path) result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) elif file_type == "csv": df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip") content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) elif file_type in ["xls", "xlsx"]: try: df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) except Exception: df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) else: result = json.dumps({"error": f"Unsupported file type: {file_type}"}) with open(cache_path, "w", encoding="utf-8") as f: f.write(result) return result except Exception as e: logger.error(f"Error converting {file_type} file to JSON: {str(e)}") return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) def log_system_usage(tag=""): try: cpu = psutil.cpu_percent(interval=1) mem = psutil.virtual_memory() logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") except Exception as e: logger.error(f"[{tag}] GPU/CPU monitor failed: {e}") def init_agent(): logger.info("🔁 Initializing model...") log_system_usage("Before Load") default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=True, step_rag_num=8, seed=100, additional_default_tools=[], ) agent.init_model() log_system_usage("After Load") logger.info("✅ Agent Ready") return agent def format_response_for_ui(response: str) -> str: """Formats the raw response for clean display in the UI""" # Remove any tool call metadata cleaned = response.split("[TOOL_CALLS]")[0].strip() # If we have a structured response, format it nicely if "Potential missed diagnoses" in cleaned or "Flagged medication conflicts" in cleaned: # Add markdown formatting for better readability formatted = [] for line in cleaned.split("\n"): if line.startswith("Potential missed diagnoses"): formatted.append(f"### 🔍 Potential Missed Diagnoses") elif line.startswith("Flagged medication conflicts"): formatted.append(f"\n### ⚠️ Flagged Medication Conflicts") elif line.startswith("Incomplete assessments"): formatted.append(f"\n### 📋 Incomplete Assessments") elif line.startswith("Highlighted abnormal results"): formatted.append(f"\n### ❗ Abnormal Results Needing Follow-up") else: formatted.append(line) return "\n".join(formatted) return cleaned def analyze(message: str, history: list, files: list): start_time = datetime.now() logger.info(f"Starting analysis for message: {message[:100]}...") if files: logger.info(f"Processing {len(files)} uploaded files") history = history + [{"role": "user", "content": message}, {"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}] yield history, None extracted = "" file_hash_value = "" if files: try: with ThreadPoolExecutor(max_workers=4) as executor: futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files] results = [sanitize_utf8(f.result()) for f in as_completed(futures)] extracted = "\n".join(results) file_hash_value = file_hash(files[0].name) logger.info(f"Processed {len(files)} files, extracted {len(extracted)} characters") except Exception as e: logger.error(f"Error processing files: {str(e)}") history[-1] = {"role": "assistant", "content": f"❌ Error processing files: {str(e)}"} yield history, None return prompt = f"""Review these medical records and identify EXACTLY what might have been missed: 1. List potential missed diagnoses 2. Flag any medication conflicts 3. Note incomplete assessments 4. Highlight abnormal results needing follow-up Medical Records: {extracted[:12000]} ### Potential Oversights: """ logger.info(f"Generated prompt with {len(prompt)} characters") response_chunks = [] try: logger.info("Starting model inference...") for chunk in agent.run_gradio_chat( message=prompt, history=[], temperature=0.2, max_new_tokens=1024, max_token=4096, call_agent=False, conversation=[] ): if not chunk: continue if isinstance(chunk, str): response_chunks.append(chunk) elif isinstance(chunk, list): response_chunks.extend([c.content for c in chunk if hasattr(c, 'content')]) partial_response = "".join(response_chunks) formatted_partial = format_response_for_ui(partial_response) if formatted_partial: history[-1] = {"role": "assistant", "content": formatted_partial} yield history, None full_response = "".join(response_chunks) logger.info(f"Full model response received: {full_response[:500]}...") final_output = format_response_for_ui(full_response) if not final_output or len(final_output) < 20: # Very short response final_output = "No clear oversights identified. Recommend comprehensive review." logger.info("No significant findings detected in analysis") history[-1] = {"role": "assistant", "content": final_output} # Save report report_path = None if file_hash_value: report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") try: with open(report_path, "w", encoding="utf-8") as f: f.write(final_output) logger.info(f"Saved report to {report_path}") except Exception as e: logger.error(f"Error saving report: {str(e)}") elapsed = (datetime.now() - start_time).total_seconds() logger.info(f"Analysis completed in {elapsed:.2f} seconds") yield history, report_path if report_path and os.path.exists(report_path) else None except Exception as e: logger.error(f"Error during analysis: {str(e)}", exc_info=True) history[-1] = {"role": "assistant", "content": f"❌ Error during analysis: {str(e)}"} yield history, None def create_ui(agent): with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo: gr.Markdown("

🩺 Clinical Oversight Assistant

") gr.Markdown("""
Upload medical records and receive analysis of potential oversights, including:
- Missed diagnoses - Medication conflicts - Incomplete assessments - Abnormal results needing follow-up
""") with gr.Row(): with gr.Column(scale=2): file_upload = gr.File( label="Upload Medical Records", file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple", interactive=True ) msg_input = gr.Textbox( placeholder="Ask about potential oversights...", show_label=False, lines=3, max_lines=5 ) send_btn = gr.Button("Analyze", variant="primary") with gr.Column(scale=3): chatbot = gr.Chatbot( label="Analysis Results", height=600, bubble_full_width=False, show_copy_button=True ) download_output = gr.File( label="Download Full Report", interactive=False ) # Examples for quick testing examples = gr.Examples( examples=[ ["Are there any potential missed diagnoses in these records?"], ["What medication conflicts should I be aware of?"], ["Are there any incomplete assessments in this case?"] ], inputs=[msg_input], label="Example Questions" ) send_btn.click( analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output] ) msg_input.submit( analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output] ) # Add some footer text gr.Markdown("""
Note: This tool provides preliminary analysis only. Always verify findings with complete clinical evaluation.
""") return demo if __name__ == "__main__": logger.info("🚀 Launching Clinical Oversight Assistant...") try: agent = init_agent() demo = create_ui(agent) demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=[report_dir], share=False ) except Exception as e: logger.error(f"Failed to launch application: {str(e)}", exc_info=True) raise