# app.py import sys, os, json, shutil, re, time, gc, hashlib import pandas as pd from datetime import datetime from typing import List, Tuple, Dict, Union import gradio as gr from concurrent.futures import ThreadPoolExecutor # Constants MAX_MODEL_TOKENS = 131072 MAX_NEW_TOKENS = 4096 MAX_CHUNK_TOKENS = 8192 PROMPT_OVERHEAD = 300 # Paths persistent_dir = "/data/hf_cache" model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: os.makedirs(d, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent def estimate_tokens(text: str) -> int: return len(text) // 4 + 1 def clean_response(text: str) -> str: text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) text = re.sub(r"\n{3,}", "\n\n", text) text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) return text.strip() def extract_text_from_excel(path: str) -> str: all_text = [] xls = pd.ExcelFile(path) for sheet in xls.sheet_names: df = xls.parse(sheet).astype(str).fillna("") rows = df.apply(lambda row: " | ".join(row), axis=1) all_text += [f"[{sheet}] {line}" for line in rows] return "\n".join(all_text) def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]: effective_limit = max_tokens - PROMPT_OVERHEAD chunks, current, current_tokens = [], [], 0 for line in text.split("\n"): tokens = estimate_tokens(line) if current_tokens + tokens > effective_limit: if current: chunks.append("\n".join(current)) current, current_tokens = [line], tokens else: current.append(line) current_tokens += tokens if current: chunks.append("\n".join(current)) return chunks def build_prompt(chunk: str) -> str: return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning.""" def init_agent() -> TxAgent: tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(tool_path): shutil.copy(os.path.abspath("data/new_tool.json"), tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": tool_path}, force_finish=True, enable_checker=True, step_rag_num=4, seed=100 ) agent.init_model() return agent def analyze_serial(agent, chunks: List[str]) -> List[str]: results = [] for i, chunk in enumerate(chunks): prompt = build_prompt(chunk) if estimate_tokens(prompt) > MAX_MODEL_TOKENS: results.append(f"❌ Chunk {i+1} too long. Skipped.") continue response = "" try: for r in agent.run_gradio_chat( message=prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[] ): if isinstance(r, str): response += r elif isinstance(r, list): for m in r: if hasattr(m, "content"): response += m.content elif hasattr(r, "content"): response += r.content gc.collect() results.append(clean_response(response)) except Exception as e: results.append(f"❌ Error in chunk {i+1}: {str(e)}") return results def generate_final_summary(agent, combined: str) -> str: final_prompt = f"""Provide a structured medical report based on the following summaries:\n\n{combined}\n\nRespond in detailed medical bullet points.""" full_report = "" for r in agent.run_gradio_chat( message=final_prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[] ): if isinstance(r, str): full_report += r elif isinstance(r, list): for m in r: if hasattr(m, "content"): full_report += m.content elif hasattr(r, "content"): full_report += r.content return clean_response(full_report) def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]: if not file or not hasattr(file, "name"): messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file."}) return messages, None messages.append({"role": "user", "content": f"📂 Processing file: {os.path.basename(file.name)}"}) try: extracted = extract_text_from_excel(file.name) chunks = split_text(extracted) messages.append({"role": "assistant", "content": f"🔍 Split into {len(chunks)} chunks. Analyzing..."}) chunk_results = analyze_serial(agent, chunks) valid = [res for res in chunk_results if not res.startswith("❌")] if not valid: messages.append({"role": "assistant", "content": "❌ No valid chunk outputs."}) return messages, None summary = generate_final_summary(agent, "\n\n".join(valid)) report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md") with open(report_path, 'w', encoding='utf-8') as f: f.write(f"# 🧠 Final Medical Report\n\n{summary}") messages.append({"role": "assistant", "content": f"📊 Final Report:\n\n{summary}"}) messages.append({"role": "assistant", "content": f"✅ Report saved: {os.path.basename(report_path)}"}) return messages, report_path except Exception as e: messages.append({"role": "assistant", "content": f"❌ Error: {str(e)}"}) return messages, None def create_ui(agent): with gr.Blocks(css=""" html, body, .gradio-container { background-color: #0e1621; color: #e0e0e0; font-family: 'Inter', sans-serif; } h2, h3, h4 { color: #89b4fa; font-weight: 600; } .gr-button.primary { background-color: #1e88e5; color: white; font-weight: bold; border-radius: 8px; padding: 0.65em 1.2em; } .gr-button.primary:hover { background-color: #1565c0; } .gr-chatbot, .gr-markdown, .gr-file-upload { border-radius: 12px; background-color: #1b2533; border: 1px solid #2a2f45; } .gr-chatbot .message { font-size: 15px; line-height: 1.6; } .gr-file-upload .file-name { font-size: 14px; } """) as demo: gr.Markdown("""

📄 CPS: Clinical Patient Support System

CPS Assistant helps you analyze and summarize unstructured medical files using AI.

""") with gr.Row(): with gr.Column(scale=3): chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages") with gr.Column(scale=1): upload = gr.File(label="Upload Medical File", file_types=[".xlsx"]) analyze = gr.Button("🧠 Analyze", variant="primary") download = gr.File(label="Download Report", visible=False, interactive=False) state = gr.State(value=[]) def handle_analysis(file, chat): messages, report_path = process_report(agent, file, chat) return messages, gr.update(visible=bool(report_path), value=report_path), messages analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state]) return demo if __name__ == "__main__": try: agent = init_agent() ui = create_ui(agent) ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False) except Exception as err: print(f"Startup failed: {err}") sys.exit(1)