import sys import os import pandas as pd import json import gradio as gr from typing import List, Tuple, Dict, Any import hashlib import shutil import re from datetime import datetime import time from collections import defaultdict # Configuration and setup persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent # Constants - Updated for 32,768 token limit MAX_TOKENS = 32768 CHUNK_SIZE = 10000 # Target chunk size (allowing 3 chunks within limit) MAX_NEW_TOKENS = 2048 # Increased output length MAX_BOOKINGS_PER_CHUNK = 5 # Process 5 bookings per chunk def file_hash(path: str) -> str: """Generate MD5 hash of file contents""" with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def clean_response(text: str) -> str: """Clean and normalize text output""" try: text = text.encode('utf-8', 'surrogatepass').decode('utf-8') except UnicodeError: text = text.encode('utf-8', 'replace').decode('utf-8') text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) text = re.sub(r"\n{3,}", "\n\n", text) text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) return text.strip() def estimate_tokens(text: str) -> int: """More accurate token estimation (1 token ~ 3-4 characters)""" return len(text) // 3.5 # More conservative estimate def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]: """Enhanced patient data processing with chronology""" data = { 'bookings': defaultdict(list), 'medications': defaultdict(list), 'diagnoses': defaultdict(list), 'tests': defaultdict(list), 'procedures': defaultdict(list), 'doctors': set(), 'timeline': [] } # Sort by date and group by booking df = df.sort_values('Interview Date') for booking, group in df.groupby('Booking Number'): for _, row in group.iterrows(): entry = { 'booking': booking, 'date': str(row['Interview Date']), 'doctor': str(row['Interviewer']), 'form': str(row['Form Name']), 'item': str(row['Form Item']), 'response': str(row['Item Response']), 'notes': str(row['Description']) } data['bookings'][booking].append(entry) data['timeline'].append(entry) data['doctors'].add(entry['doctor']) # Enhanced categorization form_lower = entry['form'].lower() if 'medication' in form_lower or 'drug' in form_lower: data['medications'][entry['item']].append(entry) elif 'diagnosis' in form_lower or 'condition' in form_lower: data['diagnoses'][entry['item']].append(entry) elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower: data['tests'][entry['item']].append(entry) elif 'procedure' in form_lower or 'surgery' in form_lower: data['procedures'][entry['item']].append(entry) return data def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str: """Generate comprehensive prompt for multiple bookings""" prompt_lines = [ "**Comprehensive Patient Analysis**", f"Analyzing {len(bookings)} bookings spanning {patient_data['timeline'][0]['date']} to {patient_data['timeline'][-1]['date']}", "Focus on identifying patterns, inconsistencies, and missed opportunities across the entire treatment history.", "", "**Key Analysis Points:**", "- Chronological progression of symptoms and diagnoses", "- Medication changes and potential interactions over time", "- Diagnostic consistency across different providers", "- Missed diagnostic opportunities based on symptoms and test results", "- Gaps in follow-up or incomplete assessments", "- Emerging patterns that may indicate chronic conditions", "", "**Patient Timeline (Condensed):**" ] # Add condensed timeline for entry in patient_data['timeline']: if entry['booking'] in bookings: prompt_lines.append( f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})" ) # Add current medications prompt_lines.extend([ "", "**Medication History:**", *[f"- {med}: " + " → ".join( f"{e['date']}: {e['response']}" for e in entries if e['booking'] in bookings ) for med, entries in patient_data['medications'].items()], "", "**Diagnostic History:**", *[f"- {diag}: " + " → ".join( f"{e['date']}: {e['response']}" for e in entries if e['booking'] in bookings ) for diag, entries in patient_data['diagnoses'].items()], "", "**Required Analysis Format:**", "### Diagnostic Patterns", "[Identify patterns in symptoms and diagnoses over time]", "", "### Medication Analysis", "[Review all medication changes and potential issues]", "", "### Provider Consistency", "[Note any discrepancies between different doctors]", "", "### Missed Opportunities", "[Potential diagnoses or interventions that were missed]", "", "### Comprehensive Recommendations", "[Actionable recommendations for current care]" ]) return "\n".join(prompt_lines) def chunk_bookings(patient_data: Dict[str, Any]) -> List[List[str]]: """Split bookings into 3 balanced chunks based on token count""" all_bookings = list(patient_data['bookings'].keys()) # Estimate token count for each booking booking_sizes = [] for booking in all_bookings: entries = patient_data['bookings'][booking] size = sum(estimate_tokens(str(e)) for e in entries) booking_sizes.append((booking, size)) # Sort by size (descending) for better chunk balancing booking_sizes.sort(key=lambda x: x[1], reverse=True) # Initialize 3 chunks chunks = [[] for _ in range(3)] chunk_sizes = [0, 0, 0] # Distribute bookings to chunks for booking, size in booking_sizes: # Find the chunk with smallest current size min_chunk = chunk_sizes.index(min(chunk_sizes)) chunks[min_chunk].append(booking) chunk_sizes[min_chunk] += size return chunks def init_agent(): """Initialize TxAgent with enhanced configuration""" default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=True, step_rag_num=4, seed=100, additional_default_tools=[], device_map="auto" ) agent.init_model() return agent def analyze_with_agent(agent, prompt: str) -> str: """Enhanced analysis with progress tracking""" try: response = "" for result in agent.run_gradio_chat( message=prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_TOKENS, call_agent=False, conversation=[], ): if isinstance(result, list): for r in result: if hasattr(r, 'content') and r.content: response += clean_response(r.content) + "\n" elif isinstance(result, str): response += clean_response(result) + "\n" elif hasattr(result, 'content'): response += clean_response(result.content) + "\n" return response.strip() except Exception as e: return f"Error in analysis: {str(e)}" def create_ui(agent): with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo: gr.Markdown("# 🏥 Comprehensive Patient History Analyzer") with gr.Tabs(): with gr.TabItem("Analysis"): with gr.Row(): with gr.Column(scale=1): file_upload = gr.File( label="Upload Patient Excel File", file_types=[".xlsx"], file_count="single" ) analysis_btn = gr.Button("Analyze Full History", variant="primary") status = gr.Markdown("Ready for analysis") progress = gr.Slider( minimum=0, maximum=100, value=0, label="Analysis Progress", interactive=False ) with gr.Column(scale=2): output_display = gr.Markdown( label="Analysis Results", elem_id="results" ) report_download = gr.File( label="Download Full Report", interactive=False ) with gr.TabItem("Instructions"): gr.Markdown(""" ## Enhanced Patient History Analysis This tool processes complete medical histories across multiple visits, identifying: - Patterns in symptoms and diagnoses over time - Medication safety issues across providers - Missed diagnostic opportunities - Gaps in follow-up care **How to Use:** 1. Upload Excel file with patient history 2. Click "Analyze Full History" 3. View progressive results 4. Download comprehensive report **File Requirements:** - Must contain complete visit history - Required columns: Booking Number, Interview Date, Interviewer, Form Name, Form Item, Item Response, Description """) def analyze_patient(file) -> Tuple[str, str, int]: if not file: raise gr.Error("Please upload an Excel file first") full_report = [] report_path = "" try: # Process Excel file df = pd.read_excel(file.name) patient_data = process_patient_data(df) # Split into 3 balanced chunks booking_chunks = chunk_bookings(patient_data) total_chunks = len(booking_chunks) for chunk_idx, bookings in enumerate(booking_chunks, 1): # Update progress progress_value = int((chunk_idx/total_chunks)*100) yield "", "", progress_value # Generate and process prompt prompt = generate_analysis_prompt(patient_data, bookings) response = analyze_with_agent(agent, prompt) if "Error in analysis" not in response: full_report.append( f"## Analysis Segment {chunk_idx} (Bookings: {', '.join(bookings)})\n{response}\n" ) yield "\n".join(full_report), "", progress_value time.sleep(0.1) # Prevent UI freezing # Generate final summary if len(booking_chunks) > 1: summary_prompt = f""" **Final Comprehensive Summary** Analyze all {len(patient_data['bookings'])} bookings to identify: 1. Overall health trajectory 2. Chronic condition patterns 3. Medication safety across entire treatment 4. Most critical missed opportunities 5. Priority recommendations **Required Format:** ### Health Trajectory [Overall progression of health status] ### Chronic Condition Analysis [Patterns indicating chronic issues] ### Critical Concerns [Most urgent issues needing attention] ### Priority Recommendations [Action items ranked by importance] """ summary = analyze_with_agent(agent, summary_prompt) full_report.append(f"## Final Comprehensive Summary\n{summary}\n") # Save report report_filename = f"patient_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md" report_path = os.path.join(report_dir, report_filename) with open(report_path, 'w', encoding='utf-8') as f: f.write("\n".join(full_report)) yield "\n".join(full_report), report_path, 100 except Exception as e: raise gr.Error(f"Analysis failed: {str(e)}") analysis_btn.click( analyze_patient, inputs=file_upload, outputs=[output_display, report_download, progress], api_name="analyze" ) return demo if __name__ == "__main__": try: agent = init_agent() demo = create_ui(agent) demo.queue( api_open=False, max_size=20 ).launch( server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=[report_dir], share=False ) except Exception as e: print(f"Failed to launch application: {str(e)}") sys.exit(1)